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Abstract—Security threats such as jamming and route manip-
ulation can have significant consequences on the performance of
modern wireless networks. In order to increase the efficacy and
stealthiness of such threats, a number of extremely challenging,
next-generation cross-layer attacks have been recently proposed.
Although existing research has thoroughly addressed single-layer
attacks, to the best of our knowledge the problem of detecting
and mitigating cross-layer attacks still remains unsolved. For this
reason, in this paper we propose a novel framework to analyze
and address cross-layer attacks in wireless networks. Specifically,
our framework consists of a detection and a mitigation component.
The attack detection component is based on a Bayesian learning
detection scheme that constructs a model of observed evidence
to identify stealthy attack activities. The mitigation component,
on the other hand, comprises a scheme that achieves the desired
trade-off between security and performance. We exemplify and
evaluate the proposed framework by considering a specific cross-
layer attack that uses jamming as an auxiliary tool to achieve
route manipulation. Simulations and experimental results ob-
tained with a testbed made up by USRP software-defined radios
demonstrate the effectiveness of the proposed methodology.

I. INTRODUCTION

It is widely known that wireless networks are vulnerable
to various types of attacks at all layers in the protocol stack
[1]. Traditionally, researchers have studied each of these at-
tacks individually, and have correspondingly devised dedicated
countermeasures [2], [3], [4]. While these approaches have
resulted in effective defense from individual attacks, they may
not be directly applicable to emerging cross-layer attacks
[5], [6], [7], which have activities and objectives that entail
different layers of the network protocol stack.

Motivations and Examples. To improve the performance
of wireless networks, functionalities such as power allocation,
channel selection, routing decision, are often jointly optimized
at different layers with a common optimization objective
[8], [9], [10]. This provides potential adversaries with an
alternative (and effective) attack strategy. Specifically, instead
of attacking the target layer directly, the adversary may choose
to attack a different layer. In this way, small-scale attack
activities on this layer may lead to dramatic changes on the
target layer. Emerging software-defined radio platforms further
facilitate such attacks by easing the manipulation of lower-
layer dynamics.

Cross-layer attacks present several advantages compared
to traditional single-layer attacks. To illustrate this point, we
discuss some examples.
• MAC poisoning attack. Let us suppose a node has two

frequency channels (f0 and f1) dynamically available for
communication. Let us also suppose f0 is experiencing more
interference than f1, thus the node is using f1. The target of
the adversary is hindering the node’s throughput. In case of a
single-layer attack, the attacker may directly jam the physical
layer on f1. However, in case of cross-layer attack, the attacker
may influence the medium access control (MAC) layer by
periodically falsifying channel reservation on frequency f1,
and thus inducing the node to eventually switch to f0, and
experience lower throughput.
• Hammer-and-anvil attack [5]. In this attack, the consid-

ered scenario is a wireless multihop network as illustrated in
Fig. 1. The objective of node n is to minimize the expected
end-to-end delay from itself to the sink.
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Fig. 1. Illustration of hammer-and-anvil attack.

The attacker is made up by a jammer and a compromised
node, which may undermine communication with selective
forwarding, traffic analysis, or decryption, among others. The
jammer aims at redirecting traffic to the compromised node.
To this end, it selectively jams links that do not lead to
the compromised node. With appropriate jamming, the link
between n and m will be degraded so much that m is no
longer the best next hop for n, Thus, n may select another next
hop with a higher utility, which also leads to the compromised
node in this example.
• TCP timeout attack. In this attack, the adversary aims at

stealthily disrupting existing TCP flows of a node. Similar to



[11], a compromised node in the path can delay the forwarding
of packets to the destination, thus increasing the round-trip
time (RTT) of packets and ultimately leading the TCP sender
to increase the timeout at each retransmission. Specifically, if
the delay in forwarding is carefully chosen and sufficient to
induce enough packet losses, the TCP flow will enter a timeout
and attempt to send a new packet retransmission timeout
(RTO) seconds later. If the period of the attack approximates
the RTO of the TCP flow, the TCP flow will continually incur
loss as it tries to exit the timeout state, fail to exit timeout,
and obtain near zero throughput.

Challenges. The examples above remark the peculiar char-
acteristics of cross-layer attacks. First, by properly selecting a
layer to attack, significant results can be achieved with even
only small-scale attack activities, implying that cross-layer
attacks are typically harder to detect than single-layer attacks.
Second, a cross-layer attack may induce the victim to perceive
that a certain choice on a particular layer is optimal, while
in fact it also increases the risk of the system. For example,
in hammer-and-anvil, the victim reroutes its traffic to another
node to achieve better performance, but this in turn results in
an increased control over the data by the attacker.

These characteristics pose significant challenges to both
detection and mitigation of cross-layer attacks, which existing
single-layer solutions fail to address. For example, to address
jamming at the physical layer, methods based on an expected
packet delivery ratio (PDR) are widely used [12], [13], [14].
However, this approach may not be valid to tackle cross-
layer attacks, since jamming may only be an auxiliary tool to
disrupt the functionalities of another layer. Thus, relying on
expected PDR (or other threshold-based criteria) will result in
a low attack detection rate. This calls for a detection scheme
capable of detecting small-scale activities. As far as mitigation
is concerned, single-layer solutions aim at evading from the
attacked state, which also fails in the context of cross-layer
attacks. In fact, a very popular anti-jamming method is to
exploit redundancy in routing [15], [16], which is the basis
of the hammer-and-anvil attack. Indeed, a good mitigation
scheme must be able to achieve a desirable performance-
security tradeoff, according to different applications.

Novel contributions. To address the existing research gap,
in this paper we design and develop a framework to en-
sure high-throughput and reliable wireless networking in the
presence of cross-layer attacks. To effectively detect stealthy
attacks, we design a Bayesian learning [17] based detection
scheme able to cumulatively use weak evidence to iden-
tify stealthy attack activities. We also design a mitigation
component to optimize the tradeoff between security and
performance. Thus, the detection and mitigation schemes work
together to create a countermeasure to cross-layer attacks.

To evaluate the framework on a practical use-case scenario,
we apply the framework to solve the hammer-and-anvil attack
[5]. Experimental results obtained with simulations and a
practical testbed implemented with Ettus USRP software-
defined radios [18] show that our framework is able to tackle

such attack effectively, even when the jamming activities are
performed at a level of 10x of background noise level.

The rest of the paper is organized as follows. Section II
formally introduces the proposed framework, while a use-
case scenario of our framework is considered in Section III.
Simulation and experimental results are introduced in Section
IV. Related work is discussed in Section V, while Section VI
draws conclusions with directions of future work.

II. DETECTION AND MITIGATION FRAMEWORK

The objective of the framework is to enable legitimate users
in a wireless network to detect and mitigate possible cross-
layer attacks. An overview is shown in Fig. 2.
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Fig. 2. Attack detection and mitigation framework.

A. Attack Model

We consider a wireless network with a set of legitimate users
and an adversary, which will be referred to as the defenders
and the attacker. Both sides interact with the network, affect-
ing it with their strategies, and getting rewards for different
states of it.

The network state can be fully described by a set of
variables on multiple layers, which may include signal-to-
interference-plus-noise ratio (SINR) of a link, the channel
access probability of a node, the quality of a route, among
others. We define V as the vector holding the state.

V is affected by strategies of the defenders and the attacker,
which may include power allocation, scheduling, and next
hop selection. Denoting the strategies for a defender and an
attacker as S and A, respectively, then V can be expressed as

V = g(S,A), (1)

for some function g.
The attacker and the defenders update their strategies in an

iterative way. The attacker updates its strategy only when at
least one targeted defender has updated its own, and we define
the interval between two updates of the attacker’s strategy as
one strategy updating period. The strategy updating iteration
is shown in 3, where subscripts such as i and i+ 1 are used
to distinguish different periods.
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Fig. 3. Attack-defend iteration.

The defender complies to a cross-layer protocol, in which
variables on multiple layers are jointly optimized, with a utility
function U(V). The strategy is decided by solving

Si+1 = argmax
S

U(Vi) = argmax
S

U(g(S,Ai)). (2)

The attacker launches a cross-layer attack, with an objective
unknown a-priori to the defender. Different rewards are got
depending on the network state, which will be referred to as
the attack gain and denoted by G(V). To launch the attack,
the attacker chooses a layer to perform attack activities and
create small-scale changes on. Therefore, a network state V′i
that is only slightly different from Vi, is resulted. For the
aimed defender, a lower utility U(V′i) is experienced, and it
will seek a new optimal solution according to (2). By choosing
a proper layer to attack, it is possible that the optimization
path for U(V), V′i → Vi+1 also increases G(V). In other
words, in response to the small change made by the attacker
on one layer, the defender changes the states on other layers,
in a direction that both maximizes its utility and increases the
attack gain.

B. Attack Detection

The detection engine computes the belief that a specific
cross-layer attack is taking place. First, it estimates the attack
activities based on observed events; then, the result is mapped
to possible attacks according to their features.

The attack activities are directly reflected by the network
state changed by the attacker. However, since V′ is only
slightly different from V (we omit the subscripts such as i
and i + 1 since the following discussion only involves one
strategy updating period), the defender must be able to detect
slight changes. To address this challenge, we use Bayesian
learning [17], which treats the unknown as a random variable
and update its distribution once a new evidence is available.
The more evidences are accumulated, the closer the result
is to the real distribution of the variable. Therefore, it is
able to construct a hypothesis with high confidence based on
consecutive but not decisive evidences, which perfectly suits
the scenario we are considering.

Specifically, V is viewed as a random variable with an
unknown distribution. This assumption is valid, since the
strategy of the attacker is static in one strategy updating
period. Note that some environmental variables may also
affect V, but they can be generally assumed to be either
constant (e.g., network topology), or a random variable with
a static distribution (e.g., channel fading) during one strategy

updating period. Therefore, these variables do not undermine
the assumption.

To learn the true distribution of V, the defender keeps
records on observable events during the period. Such events
may include a successful (or failed) reception of a bit (or
packet), the result of a channel contention, and the end-to-end
delay of a message. We denote an event as Ok.

These events reveal different states such as SINR of a link,
channel access probability, and quality of a route, but in a
probabilistic way. That is, an event Ok = ok happens with a
probability for a given network state V = v, i.e.,

P{Ok = ok|V = v} = f(ok,v). (3)

The function f(ok,v) is often available, by either theoretically
formulating (e.g., the bit error probability for a given SINR),
or training.

Then, if a sequence of independent events {ok}k=1,...,K

have happened, we have

P{{Ok}k=1,...,K = {ok}k=1,...,K |V = v} =
K∏

k=1

f(ok,v),

(4)
Therefore, we have the a-posteriori distribution

P{V = v|{Ok} = {ok}} =

=
P{{Ok} = {ok}|V = v}∫

v
P{{Ok} = {ok}|V = v} · P{V = v} dv

· P{V = v},

(5)
where P{V = v} is some a-priori distribution of V, which
represents the ideal network state (i.e., without attacks). Note
that this quantity is usually available. For example, the distri-
bution of SINR on a link can be derived from the fading model,
the channel access probability for any node in a network
running CSMA/CA is approximately the same, and so forth.
If the accurate knowledge is not available, usually it is still
possible to know some information on it, such as the functional
form, and the range for the values, as explained in [17].

With the a-posteriori distribution in (5) avaiable, the de-
fender is now aware of the attack activities of the attacker.
However, we still need to estimate the attack objective, since
it is possibly on another layer than that with the attack
activities. For this we employ a classifier taking both the a-
posteriori distribution of the network state, and features of
attacks that the network is prone to, as input. We use B to
denote the features of an alleged attack, which represents a-
priori knowledge on typical network state under this attack,
then we have the classifier

Attacked
C(P{V = v|{Ok} = {ok}}, B) ≶ Cth,

Not attacked
(6)

where Cth is a threshold that should be set according to the
typical impact of the alleged attack on network state.

C. Attack Mitigation
The attack mitigation engine works when an attack is

detected. Since the strategy of the attacker may result in a



network state in which the optimization in (2) towards a di-
rection that both performance and risk increase, the mitigation
engine must decide a strategy Sk to optimize the security-
performance tradeoff. To achieve this, we define a security-
performance function as

h(Sk,Ak) = α · E[U(Vk)]− β · E[G(Vk)]

= α · E[U(g(Sk,Ak))]− β · E[G(g(Sk,Ak))],
(7)

where E[·] is the expectation of a random variable. The ex-
pected utility E[U(Vk)] represents performance and negative
attack gain −E[G(Vk)] represents security. The mitigation
engine decides the optimal strategy by solving

maximize
Sk

h(Sk,Ak) (8)

subject to E[U(Vk)] ≤ Uth (9)
E[G(Vk)] ≤ Gth, (10)

where α and β are control variables. By adjusting their values,
the controller can regulate the desired tradeoff point between
performance and security. Constraints (9) and (10) represent
the minimum desired performance and security, respectively.

The values of α and β will mainly depend on the considered
application. For example, video streaming applications usually
require high performance on data rate but low security level,
whereas a wireless sensor network collecting scientific data
usually requires security but may tolerate low data rate.

III. USE-CASE EXAMPLE: HAMMER-AND-ANVIL ATTACK

To illustrate how the proposed framework works in practical
scenarios, we apply it to a specific cross-layer attack, namely
the hammer-and-anvil attack introduced in [5]. We will briefly
introduce the attack, but some details are omitted for space
limit. Readers can refer to [5] for them.

A. Brief Introduction
As shown in Fig. 1, the considered wireless multihop

network consists of a set N of nodes. Data is generated at
source nodes and forwarded to the sink z ∈ N in a hop-by-
hop manner. A node n ∈ N must decide its power allocation
Pn = {P 1

n , . . . , P
|F|
n } on the set F of channels, as well as

the next hop m̂n. Therefore, its strategy can be written as
Sn = {Pn, m̂n}.

The objective of node n ∈ N is to minimize the ex-
pected end-to-end delay from itself to the sink, represented
as Tn(Pn, m̂n). To this end, a joint optimization of Pn on
physical layer, and m̂n on network layer is performed, with
the optimal strategy

{P∗n, m̂∗n} = arg max
Pn∈Pn,m̂∈Vn

−Tn(Pn, m̂n), (11)

where Pn and Vn are the set of possible power allocation, and
the neighbor set of n, respectively.

As a remark, the queueing model in [5] states that the
average delay of link n → m̂n is an decreasing function of
the achievable throughput of the link, which is expressed as

µn(m̂n) =
∑
f∈F

log2

(
1 +

P f
nH

f
n(m̂n)

Ifn(m̂n) + ηfn(m̂n)

)
, (12)

with Hf
n(m̂n), Ifn(m̂n), and ηfn(m̂n) denoting the channel

coefficient of link n→ m̂n, the interference and noise at m̂n,
respectively.

(12) establishes the ground for hammer-and-anvil attack
to work. The attacker is made up by a jammer j and a
compromised node c ∈ N . The compromised node can
undermine communication in various ways. For the sake of
generality, we assume the activities are not observable by
an outsider, meaning there is no way to distinguish it from
legitimate nodes.

The jammer aims to redirect traffic to the compromised
node. To this end, it selectively jams links that do not lead to
the compromised node. For example, if j jams the link n→ m,
the achievable throughput µn(m) will be degraded, resulting
an increased Tn(m). With appropriate jamming, the utility is
degraded so that, for ∀Pn ∈ Pn, −Tn(Pn,m) < −Tn(P′n, l),
for l and some P′n. Then n will choose l instead of m as the
next hop.

The strategy of the attacker is simply the power allocation
of the jammer, Pj, and its attack gain is the input data rate of
the compromised node.

B. Attack Detection

It is shown in [5] that the attack objective can be achieved
by small-scale jamming. Therefore, it is difficult to accurately
detect the attack using traditional jamming detection methods
based on packet delivery ratio (PDR). We will adopt the
detection method in the framework to address this challenge.

In the following, we will focus on link n → m, and thus
eliminate the subscripts n and m. Moreover, since all the
channels are i.i.d., we will also eliminate f . We still retain
the subscript j to denote the power and channel coefficients
involving the jammer j. Therefore, we use P, Pj to denote the
power allocation of n and j on f . Furthermore, H,Hj represent
the channel coefficients from n and j to m, on channel f ,
respectively.

To detect the attack, we focus on the network state of the
interference I = PjHj, as it is the direct variable affected by
jamming. For the observable events, we choose the reception
of bits at the receiver, since it reveals the interference. We
denote an event as ek and formally defined it as

ek =

{
1, bit k is received correctly,
0, bit k is not received correctly.

(13)

The conditional probability for an event ek given an inter-
ference value, shown as

P{ek|I = i} = P{ek|γ =
PH

i+ η
}, (14)

is essentially the bit error probability given the SINR γ,
with Gaussian noise η. (14) is readily available for additive
white Gaussian noise (AWGN) channels, and can be obtained
through training in other environments.

Let us assume a sequence of K bits is transmitted during
a strategy updating period. Therefore we have a sequence of



events {ek}k=1,...,K and

P{{ek}k=1,...,K |I = i} =
K∏

k=1

P{ek|I = i}. (15)

Thus, the a-posteriori distribution of I can be estimated as

P{I = i|{ek}k=1,...,K} =∏K
k=1 P{ek|I = i}∫

j

∏K
k=1 P{ek|I = j}P{I = j}dj

· P{I = i}.

(16)
The expression in (16) provides a procedure to estimate

the interference of link n → m on channel f . Starting with
some a-priori distribution P{I = i}, once a sequence of bits
have been received (correctly or incorrectly) on channel f , the
receiver computes the a-posteriori distribution according to the
corresponding likelihood for events {ek}k=1,...,K . This is done
recursively for every transmission. For practical reasons, the
integration in (16) is approximated by a summation over a
finite set I. Then, it can be rewritten as

P{I = i|{ek}k=1,...,K} =∏K
k=1 P{ek|I = i}∑

j∈I
∏K

k=1 P{ek|I = j}P{I = j}
· P{I = i}.

(17)
When the number of channels is large, it may not be prac-

tical to compute (17) for each channel in every transmission.
In this case, the receiver can select some channel(s) from F
to update.

For attack mapping, without observable behavior of the
compromised node, the most obvious feature is the small
jamming scale. We design the classifier as

unattacked
P{Ilwr ≤ I ≤ Iupp} ≶ Pth.

attacked
(18)

If the a-posteriori probability that the interference is between
a range is higher than a probability threshold, the link is
considered to be jammed. The thresholds Ilwr, Iupp, and Pth

correspond to the feature B in (6). The network management
entity can adjust these thresholds according to its information
on whether the attack exists, how far the jammer is likely to
be, and so forth. The resulting jamming detection scheme is
described in Algorithm 1.

C. Attack Mitigation

After the attack is detected, we further apply the proposed
framework to generate a mitigation scheme. Therefore, we
define a performance-security function as in (7) and optimize
it in the fashion of (8) - (10).

The performance component is simply the negative of delay
−Tn. The security component is the negative of the attack
gain, i.e., the amount of data that is routed to the compromised
node c. However, since the compromised node is indistin-
guishable from legitimate nodes, we cannot detect its accurate
location or even assert that such a node exists. Therefore, we
cannot exactly quantify the attack gain. Instead, we define

Algorithm 1 Bayesian learning-based jamming detection
1: Given node m ∈ N and a-priori distribution P{Ifm = i};
2: while true do
3: if A node n ∈ N selects m as the receiver and wins

the channel competition then
4: n and m conduct channel estimation and get

Hf
nm,∀f ∈ F ;

5: Based on Hf
nm, n decides the strategy and transmits;

6: m selects a F ′ = {f ⊂ F : P f
n 6= 0};

7: for f ∈ F ′ do
8: Compute the likelihood in (15) based on the bit

reception events;
9: Update the a-posteriori probability in (17);

10: end for
11: end if
12: if A-posteriori distribution satisfies convergence condi-

tion; then
13: Break;
14: end if
15: end while
16: if (18) holds for a certain number of f ∈ F then
17: Node m is considered jammed;
18: else
19: Node m is considered not jammed;
20: end if

by Rn the approximate risk of leading to a compromised
node, and use −Rn to represent the security component. The
optimization problem can then be formulated as

maximize −αTn − βRn. (19)

The values of Tn and Rn will be discussed later, for different
strategies. Without loss of generality, we assume that l is the
best next hop candidate for n with jamming, while the jammed
node m is the second best one, in the following discussion.

Two simple strategies for n are (i) to reroute to l or (ii)
to keep routing to m. We denote these strategies as Sl and
Sm, respectively. The delay for the two strategies are then
Tn(Sl) = Tn(l) and Tn(Sm) = Tn(m), respectively. It
is reasonable to assume that routing through l has a high
likelihood of leading to the compromised node, while choosing
m is unlikely to lead to the compromised node. Therefore, we
can set Rn(Sl) = 1 and Rn(Sm) = ε, with a small ε ∈ (0, 1].
Since Rn(Sl) >> Rn(Sm), a desirable compromise between
performance and security may not be available with these two
strategies alone.

A more sophisticated strategy that may enable a better
compromise can be designed based on a secure network coding
strategy [19], which we denote as SSNC . We construct the
secure network coding scheme as follows:

1) Choose a suitable integer r and get the message vector
X from GF (r)(q)1, for some q;

1GF stands for Galois Field.
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Fig. 4. Example scenario: (a) topology; (b) traffic map without jamming; (c) traffic map with jamming, Pmax
j = 10 mW.

2) Choose a suitable r-dimensional linear network code E
on GF (r)(q);

3) Encode the vector X by multiplying it with the encoding
matrix, and get the encoded vector Y = EX;

4) Among the r elements of the encoded vector Y , the first
Nl are transmitted through l, and the remaining Nm are
transmitted through m, (Nl +Nm = r).

According to Theorem 2 in [19], there exists a code E
guaranteeing that neither l nor m can decode the messages
if dim(E) = r and max(dim(Vl),dim(Vm)) < r,2 with
Vl and Vm being the linear spans of the encoding vectors
corresponding to l and m, respectively.

Since Nl and Nm out of Nl + Nm encoded messages
are transmitted through l and m respectively, the achievable
performance for this strategy is

Tn(SSNC) =
NlTn(l) +NmTn(m)

Nl +Nm
+

1

λn
(Nl +Nm − 1).

(20)
The second term on the RHS represents the additional delay
introduced by waiting for all the Nl +Nm messages to arrive
to the destination before encoding. Since it is guaranteed
that neither m nor l can decode the message, the risk is
Rn(SSNC) = 0.

To sum up, node n chooses a strategy among (i) reroute to
l, (ii) keep sending through m, and (iii) use secure network
coding, according to the performance risk values for each of
them. The corresponding performance-security functions are

hn(Sl) = −αT̂n(Sl)− β, (21)

hn(Sm) = −αT̂n(Sm)− βε, (22)

hn(SSNC) = −αT̂n(SSNC). (23)

Note that the performance is normalized to be comparable to
the risk, which takes values in [0, 1]. Then, the problem is

maximize
S∈{Sl,Sm,SSNC}

hn(S). (24)

This problem can be solved using Algorithm 2.

2dim stands for dimension.

Algorithm 2 Secure network coding based attack mitigation
Given a jammed link n→ m:
n finds the best next hop candidate l ∈ Vn, and the optimal
secure network code (Nl, Nm);
if (23) ≥ max[(21), (22)] then

proceed with the secure network coding scheme;
else if (22) ≥ max[(21), (23)] then

Transmit through m;
else

Transmit through l;
end if

IV. PERFORMANCE EVALUATION

We now evaluate the proposed schemes through both sim-
ulations and testbed experiments.

A. Simulation Settings

A network of 25 nodes is randomly generated in a 500m×
500m area, with one sink and one compromised node. There
is a jammer whose location is set in accordance to the location
of the compromised node. A typical example is shown in Fig.
4(a). For convenience, we label the nodes with numbers. Data
sessions are generated at the leftmost 5 nodes. The generation
rates are randomly set, with a mean value of 80kbits/s. Each
legitimate node has power budget Pmax = 1 W. There are
10 mutually orthogonal channels, with bandwidth of 10 kHz
each. All channels have a path loss with exponent 3 and i.i.d.
Rayleigh fading with parameter 0.5. The spectral density of
noise is 1×10−8W/Hz. The power budget of the jammer is set
to 10−100mW, i.e., only 1/100−1/10 as high as that of the
legitimate nodes. Even with this level of jamming power, the
attack is effective. This can be verified in 4 (b) and (c), which
show traffic maps corresponding to the example topology.
Considering the simulation settings, even with a jammer that
only causes interference around 10 times the noise level, a
significant amount of data can be “driven” to the compromised
node. Therefore, the efficiency and stealthiness is verified.

B. Attack Detection

Since we focus on small-scale jamming, the considered in-
terference range for the distribution I is set to [0, 1×10−7]W,
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Fig. 5. Detection results for small-scale jamming: (a) Pmax

j = 0; (b) Pmax
j = 10 mW; (c) Pmax

j = 100 mW.

Jamming power budget Pmax
j (mW) 0 10 100

Bit error rate (%) 3.84 9.84 9.78

TABLE I
BER OF NODE 7 FOR DIFFERENT JAMMING POWER

with a step size of 1 × 10−9 W. The proposed jamming
detection scheme can effectively detect the interference caused
by small-scale jamming attack. For node 7, which is the
target node of the jammer, the a-posteriori distribution of I
is shown in Fig. 5, for Pmax

j = 0, Pmax
j = 10 mW, and

Pmax
j = 100 mW. We assume uniform a-priori distribution

P{I = i}. We observe that the interference can be effectively
and accurately estimated in all cases. For Pmax

j = 0, which
means no jamming attack, the distribution converges to a
single peak at I = 0 for all channels, and provides a perfect
estimation. For Pmax

j = 10 mW, the a-posteriori distribution
of I concentrates at around −51 dBm. Considering that the
distance from the jammer to node 7 is 40.2 m, the average
jamming-caused interference is −50.5 dBm. Therefore, the
result is accurate. For Pmax

j = 100 mW, the a-posteriori
distribution converges to the largest possible value in I, i.e.,
I = −40dBm, since in this case the jammer creates relatively
large interference.

To provide a better understanding, we list the corresponding
bit error rates (BER) in Table I. We observe that the difference
in BER with or without jamming is small. This implies that
a detection scheme based on BER only may not work well.
Therefore, the proposed detection scheme can better discrim-
inate between jammed and unjammed scenarios with small-
scale jamming. This is confirmed by the receiver operating
characteristic (ROC) curves shown in Fig. 6.

To obtain the ROC curve, we ran simulations for different
topologies and varied the jamming power budget between
10 mW and 100 mW with a step of 10 mW. For each
simulation, the learned distribution of interference is fed to
the classifier defined in (18). We point out that, there is not
yet a detection method for the considered attack to compare
with. We try to compare the ability of attack activity detection,
i.e., jamming detection, with traditional method. Therefore, we
set the upper bound Iupp to infinity for fairness. True positive
rates (TPR) and false positive rates (FPR) are recorded for the
threshold Ilwr ∈ [0, 1×10−4]mW, with a step of 1×10−6mW.
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Fig. 6. ROC curves of the proposed detection and BER-based detection
methods.

For comparison, we also plot the ROC curve for BER-based
jamming detection, with the classifier

unjammed
BER ≶ BERth,

jammed
(25)

and the threshold varying from 0 to 0.5, with a step of 0.001.
Comparing the two ROC curves, we find that the proposed
detection scheme results in a large area under the curve (AUC),
and can thus achieve very reliable detection results in most
cases. Conversely, the BER-based detection method has much
smaller AUC, and thus is inferior to the proposed method.

C. Attack Mitigation

To demonstrate the performance of the mitigation scheme,
we used traces from the previous simulations. We identified the
jammed link in each topology, i.e., n→ m, and found the best
next hop candidate l for n. For the strategies of rerouting to l,
staying on m, and using secure network coding, we computed
the performance-risk functions defined in (21), (22) and (23),
for different values of (α, β). The results are shown in Fig. 7.

For α = 1, β = 0, i.e., when performance is the only
concern, secure network coding is not as good as using the
best unjammed link. However, it still achieves considerable
gain compared to the jammed link. When risk is taken into
account, the benefits of secure network coding become ob-
vious. For α = β = 0.5, i.e., when performance and risk
are equally important, secure network coding outperforms the
other two since it provides a better performance-risk balance.
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Fig. 7. Optimal performance-security tradeoff with different settings: (a) α = 1, β = 0; (b) α = 0, β = 1; (c) α = 0.5, β = 0.5.

For α = 0, β = 1, i.e., when the only concern is risk, the
relationship between the three strategies is the same as in
the previous case, but the benefits of secure network coding
compared to using the jammed link become marginal, since
it is unlikely that a link leading to a compromised node is
jammed.

D. Testbed Evaluation

In real scenarios, there may not be a closed-form relation-
ship between BER and SINR. In this case, a training process
is required. We conducted testbed experiments where we first
trained a BER curve from the transmission results without
jamming; then, based on the curve, we ran the jamming
detection scheme with reactive jamming to show its accuracy.
We used two USRP N210 [18] to form a transmitter-receiver
pair, and another USRP X310 [18] is used as the jammer,
emitting interference. We used a channel with bandwidth of
10 kHz.

In the training period, the jammer constantly emits interfer-
ence with varying power. Meanwhile, the transmitter-receiver
pair conducts normal transmissions. The receiver estimates
the SNR and calculates the corresponding BER by comparing
the received file with the original one. Multiple points are
obtained, based on which a BER-SINR curve is generated by
using exponential fitting. The curve is shown in Fig. 8.

6 7 8 9 10 11 12 13 14

SINR [dB]
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

B
it 

er
ro

r r
at

e

Measured data
Fitted curve

Fig. 8. Trained BER curve.

To test the accuracy of the proposed detection, we run more

Detection Result No Yes Yes
Relative BER 0.27% 1.28% 3.92%

TABLE II
DETECTION RESULT AND CORRESPONDING RELATIVE BER

experiments with the reactive jamming model. The receiver is
able to estimate the SINR without jamming. Along with the
real bit reception events, the distribution of interference can be
learned. We use the interference-to-noise ratio (INR) instead
of absolute interference level to reduce the error. In Fig. 9,
we show the resulting PDF for different jamming scenarios.
Since the real interference level at the receiver is unknown, we
use the BER to distinguish the scenarios. Note that there is
an irreducible BER of 1.15% caused by the multipath effect,
representing the lowest BER the transmitter-receiver pair is
able to achieve.

Since our objective is to detect small-scale jamming, we
set INRth = 0 dB, and used Pb(INR > INRth) > 0.9
as the classifier. If the interference is at least at the same
level of noise with probability 0.9, then it is considered to
be jammed. With this classifier, the detection results and the
relative BER (real BER - irreducible BER) are shown in Table
II. The proposed scheme is able to detect small scale jamming
resulting in very low relative BER, as long as it is greater than
1%, which verifies the effectiveness of the detection scheme.

V. RELATED WORK

Recently, several cross-layer attacks have been unveiled,
which cover all layers of the network protocol stack. In [7],
two cross-layer attacks jointly utilizing tools at the physical,
MAC, and network layers are studied. Vulnerabilities of TCP
have been exploited by researchers in multiple ways. In [6],
a primary emulation attack is used with the same objective.
The hammer-and-anvil attack [5] uses jamming to assist the
objective of routing manipulation. Although many cross-layer
attacks have been proposed, little work has been devoted to
devise general countermeasures to address them, as opposed
to this paper. There are some efforts on cross-layer intrusion
detection [20], [21]. While these works support using features
on multiple layers to detect an attack, these features are not
considered in a cross-layer manner.

There is a rich body of literature on jamming detection
in wireless networks [12], [13], [22], [23]. Most of them
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Fig. 9. Detection results for small-scale jamming, with real BER: (a) 1.42%; (b) 2.43%; (c) 5.07%.

use hard thresholds on metrics such as packet delivery ratio
(PDR) for hypothesis making. Some works proposed to use
optimal likelihood ratio (LLR) test and sequential probability
ratio test (SPRT), but perfect knowledge on jamming effect is
still needed, which is generally not available for small-scale
jamming.

VI. CONCLUSIONS

W proposed a general countermeasure framework against
cross-layer attacks in wireless networks, with a learning-based
detection and optimal mitigation scheme. The learning-based
detection is able to utilize observations of multiple layers
to generate a hypothesis on the risk to a certain attack; the
mitigation scheme optimally uses multiple mitigation tools
and achieves the desired security-performance tradeoff under
different requirements. We tested the framework on a state-
of-the-art cross-layer attack with implementation details. Both
simulation and testbed results were provided, showing that
the countermeasure is superior to traditional single layer
approaches.
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