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Abstract—Recent years have seen the introduction of large-
scale platforms for experimental wireless research. These plat-
forms, which include testbeds like those of the PAWR program
and emulators like Colosseum, allow researchers to prototype
and test their solutions in a sound yet realistic wireless en-
vironment before actual deployment. Emulators, in particular,
enable wireless experiments that are not site-specific as those
on real testbeds. Researchers can choose among different radio
frequency (RF) scenarios for real-time emulation of a vast
variety of different situations, with different number of users,
RF bandwidth, antenna counts, hardware requirements, etc.
Although very powerful, in that they can emulate virtually any
real-world deployment, emulated scenarios are only as useful
as how accurately they can reproduce the targeted wireless
channel and environment. Achieving emulation accuracy is
particularly challenging, especially for experiments at scale for
which emulators require considerable amounts of computational
resources. In this paper, we propose a framework to create RF
scenarios for emulators like Colosseum starting from rich forms
of input, like those obtained by measurements through radio
equipment or via software (e.g., ray-tracers and electromagnetic
field solvers). Our framework optimally scales down the large
set of RF data in input to the fewer parameters allowed
by the emulator by using efficient clustering techniques and
channel impulse response re-sampling. We showcase our method
by generating wireless scenarios for the Colosseum network
emulator by using Remcom’s Wireless InSite, a commercial-
grade ray-tracer that produces key characteristics of the wireless
channel. Examples are provided for line-of-sight and non-line-
of-sight scenarios on portions of the Northeastern University
main campus.

I. INTRODUCTION

The last few years have seen the development of large-
scale platforms for experimental wireless research. They
allow users to operate on remotely-accessible nodes deployed
in realistic configurations [1]. By virtualizing softwarized
protocol stacks on general-purpose “white-box” hardware
connected to programmable radios these platforms enable
experimentation in a host of sectors of the wireless ecosystem,
like 5G-and-beyond cellular, ad hoc networks and Internet
of Things (IoT) applications, just to name a few. They also
promote reproducible results by enabling users to package
their solutions in shareable virtualized containers. This way,
users can not only replicate original results but also, easily
and faithfully, build upon them, pushing forward research and
innovation.

Experimental platforms recently available to the wireless
community include those of the U.S. National Science Foun-
dation Platforms for Advanced Wireless Research (PAWR)
program: POWDER [2], COSMOS [3] and AERPAW [4].
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These testbeds allow researchers and practitioners to test their
solutions in realistic setups. However, by design, they are
constrained to the specific hardware, topology and location of
the devices that are physically deployed. Another instrument
for experimentation at scale is Colosseum, the world’s largest
wireless network emulator with hardware in the loop [5],
[6]. Colosseum allows users to virtualize softwarized pro-
tocol stacks on remotely-accessible Software-defined Radios
(SDRs). The emulator is not site specific, in that it is not
constrained to a specific hardware topology. Channels among
each pair of nodes are emulated through so-called Radio
Frequency (RF) scenarios. This way, the users of Colosseum
can test their solutions in a large variety of wireless configura-
tions, modeling urban and rural setups, with variable number
of users, traffic and mobility patterns [7]. Although very
powerful, emulators like Colosseum are only as good as their
ability of accurately capturing and modeling the effects of the
wireless channel. Poorly designed scenarios would lead to a
non-realistic emulation. Even worse, prototypes developed for
such scenarios would not be applicable to the real world.

Achieving accuracy in creating large RF scenarios is
challenging, especially for real-time wireless emulators. For
instance, emulating the Power Delay Profile (PDP) that repre-
sents the complex multi-path characteristics of a wireless link
may require a large number of non-zero valued taps of the
Finite Impulse Response (FIR) filter that models the PDP [8].
The higher the number of taps 6= 0, the more accurate the
multi-path model. Unfortunately, an emulator that in real-
time must consider the combined effect of multiple signals
at each receiver location, needs computational resources and
time that are proportional to the number of filter taps 6= 0 to
combine, which might render any useful experiment at scale
impossible. This is why the design of large wireless network
emulators requires to strike a balance between accuracy and
the resources that are needed to emulate complex RF scenar-
ios. For instance, the designer of Colosseum had to settle for
FIR filters with 512 taps, only 4 of which may have non-
zero values [6]. This makes creating RF scenarios for large
real-time emulator an interesting and non trivial problem.

In this paper, we propose a new framework for creating RF
scenarios for time-domain FIR filter-based channel emulators
like Colosseum. We start by considering wireless scenarios
with rich RF information as produced by professional-grade
ray-tracing software. The wireless channel is modeled taking
into accounts typical effects such as path loss and multi-path
depending on the environment of a scenario of interest, e.g.,
considering the presence and make up of buildings and other
fixtures and the location of the devices. We then describe
a process to replicate the same scenario in the emulator,
scaling down the ray-tracer output to determine the non-



zero taps of the emulator filters, and what their non-zero
value should be. The process is based on techniques such as
clustering—to optimally select which taps should be different
from zero—and on channel impulse response sampling—to
align the tap delays to the input expected by the channel
emulator. We showcase our method by generating wireless
scenarios for Colosseum by using the commercial ray-tracer
Wireless InSite by Remcom [9]. Examples are provided for
LTE D2D-based line-of-sight and non-line-of-sight scenarios
on portions of the Northeastern University main campus in
Boston, MA. For these scenarios we show the effectiveness of
our method by computing the emulated path loss and delay
spread and comparing them to those of the ray-tracer. Our
results show that the proposed method results in 0 dB error
path loss, and in a significantly improved approximation of
the delay spread with respect to baseline techniques.

We notice that although using Colosseum as an exemplary
real-time wireless emulator, our framework is completely
general, and can be used to create RF scenarios for any time-
domain FIR filter-based channel emulator, starting from an
RF-rich input from any ray-tracer or electromagnetic field
solver, or from direct measurements in the field.

To the best of our knowledge, this is the first work on
creating RF scenarios for large-scale, real-time wireless em-
ulators. Previous works on wireless channel emulation, based
on FIR filters or Field Programmable Gate Arrays (FPGAs),
are mostly concerned with the definition and implementation
of the instrument, rather than with the creation of scenarios.
Examples include the work by Patnaik et al. that investigates
the match between a FIR filter response and a simulated
one [10], the work of Olmos et al. on the design and
implementation of wide-band channel models for real-time
emulators [11], and the papers by Eslami at al. [12], Matai et
al. [13] and Buscemi and Sass [14], which propose solutions
for modeling a real-time channel in the FPGA, as done for
Colosseum [6].

The rest of the paper is organized as follows. A brief primer
on Colosseum is provided in Section II. We describe how to
create emulator-compatible scenarios from ray-tracing output
in Section III. A demonstration of the proposed method is
provided in Section IV. Finally, Section V concludes the
paper.

II. COLOSSEUM: A PRIMER

With a total of 21 server racks, more than 170 high-
performance servers, 256 Universal Software Radio Pe-
ripherals (USRPs) X310 and the capability of emulating
over 65K wireless channels, Colosseum is the world’s largest
network emulator [5]. Originally built by DARPA to sup-
port the Spectrum Collaboration Challenge [15], Colosseum
is an SDR-based testbed for repeatable—yet realistic—
experimental wireless research [6]. The Colosseum SDRs are
equally divided among 128 remotely-accessible servers called
Standard Radio Nodes (SRNs) that are assigned to the users
of the testbed and a Massive Channel Emulator (MCHEM),
which performs the real-time emulation of complex wireless
environments. Colosseum enables users’ experiments through
the instantiation of virtualized Linux Containers (LXC) in-
stances, and to operate the USRPs they are connected to,
which act as an RF front-end. The USRPs on the SRN-side
are connected in a one-to-one manner to the 128 USRPs
of MCHEM. Instead of exchanging wireless signals “en

plein air,” the Colosseum SRNs transmit their waveforms to
MCHEM, which emulates the wireless channel specified in
the RF scenario, and sends the resulting signal to the receiving
SRNs.

In Colosseum, each wireless channel is emulated through
512 complex-valued FPGA-based FIR filter taps, which
model the different paths, delays, and other conditions of
the wireless channel between transmitter and receiver. The
channel taps of Colosseum scenarios have a time-granularity
of 1 ms. For each instant of the emulated scenario, tap
values for the channel between any two SRNs are loaded
by MCHEM in real-time and applied—i.e., convoluted—to
the signals generated by all the SRNs transmitting at the
same time. Because of the elevated complexity and size of
emulated scenarios, only four taps have non-zero values for
each emulated channel [6], [16]. Even with this limitation,
creating scenarios is computationally intensive. For instance,
a 10-minute scenario with 50 communicating nodes requires
more than 2 hours to build on a computer with 24 CPUs and
96 GB of RAM, and its output occupies more than 100 GB of
storage. Once gone through MCHEM, i.e., after MCHEM has
convoluted the signal in input from an SRN with the channel
taps of the RF scenario, the signal is sent to the intended
receiving SRNs. Consequently, choosing the right value for
the channel taps of RF scenarios is paramount to guarantee
a realistic channel emulation on emulators like Colosseum.
The aim and main contribution of this work is to determine a
general process for determining optimal values for the non-
zero taps of a FIR filter-based wireless emulator.

III. MODELING REALISTIC RF CHANNEL EMULATION

The propagation model of the wireless signal in a channel
is often represented by a set of parameters such as path loss,
multi-path, and Doppler spread. Path loss describes how the
signal power is attenuated in the channel; multi-path indicates
the presence of multiple copies of the attenuated and delayed
version of the transmitted signal. Emulating the wireless
channel requires finding a mathematical model that represents
the characteristics of the channel. A model can be created
in different ways, including experimental measurements or
simulation software and theoretical analysis. The former can
provide very accurate models. However, it is often costly
and results to be site specific. Theoretical and simulation-
based models are instead more flexible because of extensive
capabilities in modeling a variety of complex scenarios. With
today software and hardware, professional wireless simulators
allow the creation of scenarios at scale in reasonable time.

In theoretical analysis, path loss is calculated based on
physical phenomena such as absorption and spreading. Multi-
path, however, can be derived by applying multi-path param-
eter extraction algorithms, such as SAGE [17], [18], CLEAN
[19], and RIMAX [20], [21]. Alternatively, multi-path can
be found by using ray-tracer channel simulation tools. In
any case, the number of multiple paths is not fixed, and
depends on the propagation environment. However, channel
emulators can emulate a limited—and often fixed—number
of paths. This limit is usually a result of specific signal
processing techniques and/or hardware capabilities used in
the channel emulation system. Therefore, there is a need
for down-scaling the multi-path components with appropriate
approximation methods that preserve the characteristics of the
channel. In this section, we introduce a process to optimally
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Fig. 1. Northeastern University campus simulation scenario.

approximate a wireless channel to a limited number of multi-
paths imposed by the channel emulator’s requirements. Our
approach is a generic process that can be applied to virtually
any channel model whether obtained by measurement or ray-
tracer simulation.

Ray-tracer. The ray-tracer simulation is a promising
method to predict the propagation channel between the trans-
mitter and receiver in a high-frequency regime. It is based
on ray optics theory and assumes that the radio waves propa-
gate through the medium while experiencing reflection from
surfaces, diffraction from edges of objects, and scattering
from non-smooth surfaces. Ray-tracing software considers
all combinations of these phenomena and forms the possible
multiple paths between a pair of transceivers [22].

Scenario Definition. To illustrate our process of RF sce-
nario generation we start from the output of the commercial
ray-tracer Wireless InSite (WI) by Remcom [9]. As a case
study, we consider the outdoor portion of the Northeastern
University (NU) Boston campus depicted in Fig. 1. To obtain
accurate RF results we use a high-resolution 3D shapefile of
the area with ∼13k faces, and assign concrete and dry earth
material properties to the buildings and terrain, respectively.
In this setup, we model an LTE Device-to-Device (D2D)
communications scenario [23], [24] whose parameters are
shown in Table I. Since building and terrain properties are
frequency-dependent, we derive the material properties from
the recommended ITU model [25] at the carrier frequency of
the simulation scenario.

Particularly, Fig. 1 models the NU Krentzman Quadrant, an
outdoor space surrounded by three buildings and Huntington
Avenue to the North. As potential positions of the LTE User
Equipment (UE) we define a Line of Sight (LOS) grid of 25
UE locations with 10 meters spacing that covers the area and
provides 625 possible wireless channels (“LOS UE Grid” in
the figure), plus a Non-line of Sight (NLOS) UE, which is
in the shadow of the building on the right. The grid spacing
is approximately 100 times the wavelengths, which allows us
to obtain a good compromise between capturing the large-
scale characteristics of the channel and get a manageable
complexity for both the ray-tracer and the emulation scenario
generation process.

Assumptions. We configure the ray-tracer to find the paths
with up to 3rd order reflections. Higher order reflections are
not considered as they suffer from very high attenuation due
to the longer paths. Furthermore, to reduce the computational
burden, diffraction, transmission, and scattering effects are
not considered. With this configuration, the ray-tracer is able
to find the most dominant paths that contribute to the total
received power. However, even with all these assumptions, the

TABLE I
SIMULATION SCENARIO PARAMETERS.

Parameters LTE Scenario

Carrier frequency [GHz] 2.3
Signal bandwidth [MHz] 20
UE Transmit power [dBm] 24
UE antenna gain [dBi] 0
UE antenna pattern Omni-directional
UE antenna height [m] 1.5
UE noise figure [dB] 5
Ambient noise density [dBm/Hz] -167.1

resulting model still includes tens of multi-path components,
which cannot be represented in channel emulators with a
limited number of non-zero valued FIR taps.

Our process of reducing the RF rich information, and espe-
cially many multi-path components of the channel obtained
from the ray-tracer to a model for channel emulators with
limited number of non-zero taps (such as Colosseum) is made
up of two distinct steps. First, we utilize a Machine Learning
(ML)-based clustering method to form groups of multi-path
components and approximate each group with a single tap
that represents the characteristics of all the components in
that cluster. Then, we perform a re-sampling step where each
of the approximated taps will be aligned to the specific FIR
tap indices allowed by the channel emulator. We explain these
steps in detail in the following subsections.

A. Channel multi-paths clustering and approximation

The wireless channel consists of Multi Path Components
(MPC) between a transmitter and a receiver. The MPC has
both spatial and temporal characteristics, which represent
angles and Time of Arrival (TOA). The angles further include
Angle of Arrival (AOA) at the receiver and Angle of Depar-
ture (AOD) at the transmitter, each of which consists of az-
imuth and elevation angles. Therefore, these MPC parameters
form a multi-dimensional space. Needless to say, clustering
multi-dimensional data by visual inspection is impractical
especially for a large amount of measured data. ML-based
algorithms, such as K-means, are instead practical in such
cases.

K-means. In machine learning, K-means is a well-known
unsupervised clustering algorithm to optimally cluster high
dimensional data [26]. This algorithm and its variation, K-
power-means, are widely used to accurately model wireless
channels [27]–[30]. Their effectiveness in estimating the num-
ber of clusters for improved extraction of temporal and spatial
channel characteristics has been studied in [31], [32]. A
variety of algorithms have been developed based on K-means
to accurately model time-variant channels by dynamically
tracking clustered MPCs [33], [34], as well as by clustering
scattering points obtained through measurement-based ray-
tracer [35].

We leverage K-means to find similar MPCs in a real
world channel model and group them into a given number of
clusters, defined by the number of non-zero taps supported
by a channel emulator. Each cluster is identified by a single
tap (the cluster center), which represents an approximation
of all the cluster MPCs. The final output will be a K-tap
channel model that can be used in the channel emulator and
is representative of the initially simulated/measured channel.
By following this approach, we leverage all the channel



characteristics obtained from simulation/measurement, and
apply them in the approximation process to minimize the
approximation error.

The K-means algorithm takes the initial number of clus-
ters K as a priori knowledge and finds cluster centroids
by iteratively optimizing the position of the centroids and
grouping the data points. This is done by minimizing the sum
of distances between the cluster data points to the respective
cluster centroid. The algorithm solves the multi-dimensional
optimization problem of Equation 1. In this equation, Si is the
set of data points in the ith cluster, x represents the multi-
dimensional data points, ci is the ith cluster centroid, and
d(·) denotes the distance function between the data points in
cluster Si and the ith cluster centroid ci.

arg min
S

K∑
i=1

∑
x∈Si

d(x, ci) (1)

We note that the K-means algorithm is sensitive to the
initialization of the centroids [36]. Many prior works have
focused on finding an optimum initialization centroid for K-
means with the goal of improving the quality of clustering and
speeding up the convergence of the algorithm. These include
random Forgy, MacQueen, and Kaufman, among others [37]–
[39]. In this work, we use the random restart method, which
relies on running the algorithm several times from different
random starting points and choosing the best solution [40].

Generally, the K-means algorithm uses squared Euclidean
distance as the distance function for the clustering metrics.
However, in the context of wireless channel applications, this
distance function cannot address the angular periodicity and
the scale difference between angles and the delays. Although
this function was extended to cope with the angular periodic-
ity [41], it still cannot provide the same scale between the data
point dimensions. As K-means is biased in favor of feature
parameter with greater magnitude, data is normalized ahead
of clustering to avoid this undesired effect [42]. Consequently,
an alternative solution is Joint Squared Euclidean Distance
(JSED), which is a straightforward extension of the Squared
Euclidean Distance (SED) that normalizes the delays with the
variance of the delays from all considered MPCs.

The JSED distance function makes the delay and angular
distance values roughly in the same scale and provides
joint 3-dimensional clustering [43]. However, the ultimate
solution is Multi-path Component Distance (MCD) as it can
effectively improve the clustering performance of channel
data over the Euclidean distances [28]. MCD is an inter-
mediate metric to quantify the multi-path separation of the
radio channel by jointly considering the distance between
angles of arrival/departure and the time of arrival of mul-
tiple paths. It represents the distance between two angle of
arrivals/departures on the unit sphere, and scales the delay
distance with the normalized delay spread. It also introduces
a delay scaling factor, ζ to give the delay domain more
“importance” when necessary for different technologies in
wireless communication. This, for instance, has advantageous
effects on automatic clustering for real world data [43].
The MCD distance between two paths i, j is written in
Equation 2 and consists of the distances in TOA and angular
dimensions (Equations 3 and 4, respectively), where ∆τmax

=
maxi,j{|τi − τj |} and τstd is the standard deviation of the
MPC TOAs. Geometrically, the MCD distance represents

Algorithm 1 The K-means MCD clustering algorithm.
1: Input: MPC data of a specific Receiver Point
2: Input: K = number of taps
3: Input: PTh = Noise power level
4: Select xl from MPC data with power ≥ PTh
5: Initialize centroids c0k, k=1..K randomly selected from xl
6: for i = 1 to MaxIteration do
7: for each path x of xl do
8: . Compute distances MCD(x,ci−1k ), k = 1..K
9: . Assign path x to the nearest centroid c

10: Lx = arg min
k
{MCD(x, ci−1k )}

11: for each cluster k = 1 to K do
12: . Update centroids positions cik
13: . cik ← mean of all paths assigned to cluster k
14: cik = E{xl|(Lx = k)}
15: if E{∆(cik, c

i−1
k )} ≤ Threshold then

16: break
Output: ck

the radius of a hyper-sphere in the normalized multi-path
parameter distance space.

MCDij =√
‖MCDAOA,ij‖2 + ‖MCDAOD,ij‖2 +MCD2

τ,ij

(2)

MCDτ,ij = ζ.
τi − τj
∆τmax

.
τstd

∆τmax
(3)

MCDAOA|AOD,ij =

1

2

∣∣∣∣∣∣
sin(θi).cos(φi)
sin(θi).sin(φi)

cos(θi)

−
sin(θj).cos(φj)
sin(θj).sin(φj)

cos(θj)

∣∣∣∣∣∣ (4)

Algorithm 1 shows the steps to cluster the MPCs into
K groups and output the cluster centroids using the K-
means algorithm. It takes the MPCs data points and the
number of taps K as input, and prunes the paths with powers
lower than the noise level. By doing this, it ensures that
the resulting channel is realistic. In line 5, the centroids are
randomly initialized from the set of data points. Then, the
MCD distances between all the paths and the K centroids are
calculated. Next, each path is assigned to a cluster such that
the distance from the cluster centroid is minimum. Finally, the
centroid positions are updated to the mean value of the multi-
dimensional parameters of the paths assigned to the cluster.
The algorithm iterates until it reaches a maximum number of
iterations or until it converges to a negligible update in the
centroids displacements.

For the channel approximation, our goal is to utilize the K-
means algorithm to find similar paths in a multi-path model
and form them into K clusters that represent a K-tap channel
model (in the case of Colosseum K = 4). As the K-means
algorithm satisfies this goal, we feed the number of supported
non-zero FIR coefficients as the number of clusters to the
algorithm. The output of the algorithm is the label of each
MPC, which represents the approximated positions of the taps
and the position of the cluster centroids. The next required
information to reconstruct the approximated taps is the tap
gain that can be calculated by coherent summation of the
MPCs gain of each cluster. This can be written as shown in
Equation 5, where |hx| and ϕx are the magnitude and the
phase of the MPC gain in the cluster k, respectively.



hck =
∑
x∈k

|hx| .ejϕx , k = 1..K (5)

By extracting the TOAs from the cluster centroid and the
approximated tap gains from Equation 5, we can reconstruct
the CIR with K non-zero taps from the MPC data at each
receiver point. This step satisfies the limited number of taps
constraint of time-domain FIR filter-based channel emulators.

B. Channel impulse response re-sampling

Time-domain FIR filter-based channel emulators have nu-
merous FIR filter taps separated by a sampling interval
to emulate channels with practical maximum excess delay.
However, the number of non-zero taps is constrained by
design. For example, Colosseum supports 512 taps with a
10 ns sampling interval, only 4 of which can assume non-
zero values [44]. In this regard, our clustering approach (as
explained in Section III-A) approximates the CIR to satisfy
the number of non-zero taps; however, there is no guarantee
that the approximated taps will have delays aligned to the
resolution of the channel emulator filter taps. Therefore,
we need to re-sample the approximated CIR to match the
approximated taps’ TOA to the channel emulator FIR filter
indices.

Our re-sampling algorithm is shown in Algorithm 2. First,
we initialize the FIR filter coefficients and delays (lines 5-
7). This is done by constructing two series representing the
filter taps’ delays as well as the corresponding taps’ gains
initialized to zero. Then, we find the FIR tap delay closest to
the approximated CIR taps given as input (i.e., the centroid of
the associated cluster), and coherently sum up the gains of the
MPCs in that cluster. In doing so, we ensure to assign all the
approximated taps to their associated FIR filter coefficient
indices. In case of multiple taps close to the same index,
we sum up the gains of such taps (see equation 5), and
assign a single tap index and gain that represents all the
associated cluster centroids. As a result, all the approximated
taps are matched with the FIR filter tap indices imposed by
the channel emulator and represent the corresponding delays.
Our approach also guarantees that the resulting approximated
channel model has equal to or less than K taps, i.e., maximum
number of taps allowed by the channel emulator.

UE2

UE1

Fig. 2. NLOS scenario propagation paths, color-coded by received power.

Algorithm 2 The CIR re-sampling algorithm.
1: Input: taps = Approximated taps
2: Input: fs = FIR filters sampling frequency
3: Input: N = Number of FIR filters
4: Sampling interval: ds = 1/fs
5: for n = 1 to N do . Initialization
6: d̂[n] = n ∗ ds
7: h̃[n] = 0 + 0j

8: for k = 1 to size(taps) do
9: i = round(taps[k].delay/ds)

10: h̃[i] = h̃[i] + taps[k].h
Output: h̃, d̂

IV. CASE STUDIES

We provide a demonstration of our framework on Colos-
seum [5]. We consider Line of Sight (LOS) and Non-line
of Sight (NLOS) stationary scenarios in and around the
Krentzman Quadrant of the NU Boston campus (Fig. 1).

We start by modeling the scenarios in Wireless InSite
(WI) [9]. We choose the LTE D2D technology for the wireless
channel with the parameters shown in Table I. To keep the
ray-tracer computational complexity at bay, we simulated the
channels using a ray model with up to 3 orders of reflection.
Accordingly, WI finds the paths between transmitters and
receivers and calculates the TOA, received power, and the
phase of the received signal for each path. This is done by
taking into account the path trajectory distance and the reflec-
tion coefficient of the materials at each reflection point. The
simulation output includes all paths with power > −250dBm.

We, then, prune the paths with received power lower than
the noise level. This is computed using Equation 6, where
No, B and F are the ambient noise density [dBm/Hz],
the receiver bandwidth [Hz], and the receiver noise figure
[dB], respectively. We set the noise level to -89.1 dBm
according to a nation-wide measurement campaign for urban
scenarios [45].

Noise[dBm] = No + 10 ∗ logB + F (6)

In addition, as explained earlier in Section III, a time-
domain FIR filter-based channel emulator takes the FIR filter
coefficients, i.e., the gain of the channel taps, as its input.
Since WI does not directly report this parameter, we calculate
the gain of the paths as complex numbers using Equation 7.
In this equation, PTx is the transmit power in dB, and PRxi

and ϕi are the received power and signal phase per each path
i ∈ {1..N}, respectively.

h̃i = 10(PRxi
−PTx)/20 ∗ ejϕi , i = 1..N (7)

Non-line of Sight Scenario. The NLOS scenario is de-
picted in Fig. 2, in which the propagation paths between the
UEs are color-coded by the received power strength. In this
scenario, after the pre-processing steps, we have 13 paths
with the received power above the noise level. The path gains
representing the CIR of this scenario are plotted in Fig. 4 We
apply our clustering method (see Section III) to cluster the
paths, and approximate the gain of the cluster centroids using
Equation 5. The MCD distance is configured with ζ = 3 and
K = 4, i.e., the number of taps supported by Colosseum.
Then, we run the algorithm 10000 times with the random



restart method and report the best solution, i.e., the one with
the minimum Mean Squared Error (MSE).

Fig. 3 shows the clustering algorithm results for the
NLOS scenario. In this figure, paths in the same cluster
are represented with the same color. Note that the paths
with the received power lower than the noise level (-89.1
dBm) are pruned in this figure. The compactness of the
clustering solution in terms of angles and path trajectory,
which represents the path TOA, can be visually inspected
in Fig. 3.

The approximated CIR is shown in Fig. 6, where the
thicker stems show the approximated taps for each color-
coded cluster (note that a different color scheme is used in this
figure for better visualization). These approximated taps are
re-sampled using Algorithm 2, which we leverage to derive
the matched index of the channel emulator FIR filter for each
tap. The derived complex-value taps have I and Q components
that can be readily used as the input to any FIR filter-based
channel emulator. Finally, Fig. 5 depicts the re-sampled taps,
FIR filter indices, and corresponding tap delays for the four
non-zero taps prepared for the Colosseum channel emulator
with 512 FIR filters and 10 ns sampling interval.

Line of Sight Scenario. Similarly, we repeat the process
for the LOS scenario (shown in Fig. 7). In this scenario, the
LOS path is the dominant path with significant gain and lower
TOA. Therefore, it should be clustered in a separate group on
its own, or with few paths, to have a desirable approximated
channel. To do so, we increase the delay scaling factor of K-
means MCD and set it to ζ = 6 to augment the importance
of the TOA over the angles. For the sake of conciseness,
we only include the clustered CIR and the approximated
CIR for the LOS scenario, which are shown in Fig. 8. We
notice that the dominant approximated tap is close to the LOS
path, which preserves the LOS channel characteristic. An
alternate approach would be using K-power-means algorithm
that shifts the cluster centroids in favor of the higher gain
paths. However, this is outside of the scope of this paper.

Lastly, we evaluate the performance of our ML-based
approximation process using the path loss and RMS de-
lay spread, which quantify the large-scale channel charac-
teristics [46]. Following these criteria, we benchmark the
approximated channels of our proposed method and the
baseline method, namely, the K-strongest path approximation
against the original ray-tracer channels in the LOS and NLOS

UE2

UE1

Fig. 3. NLOS scenario clustered paths, color-coded by cluster.

Fig. 4. NLOS scenario CIR.

scenarios previously shown for Colosseum. The K-strongest
path method approximates the channel by simply considering
only the strongest paths for the K limited non-zero taps of
the channel emulator. As shown in Table II, for both LOS
and NLOS scenarios our process delivers

TABLE II
CHANNEL APPROXIMATION: CLUSTERING VS. STRONGEST PATHS.

NLOS scenario Path Loss [dB] Delay Spread [nS]

Ray-tracer 72.80 44.80
Strongest paths 75.49 0.10
ML Clustering 72.80 29.79

LOS scenario Path Loss [dB] Delay Spread [nS]

Ray-tracer 69.88 60.21
Strongest paths 67.31 16.85
ML Clustering 69.88 53.28

the same path loss as estimated for the original ray-tracer
channel. This is because our proposed method considers all
the paths to approximate the tap gains. In contrast, the K-
strongest path method imposes roughly 3 dB approximation
error in path loss for both scenarios, which is a significant
error. Furthermore, our process approximates the LOS chan-
nel with a delay spread close to the ray-tracer channel. In the
NLOS scenario, the delay spread shows that the proposed
method is able to capture the channel characteristic to some
extent. However, the K-strongest path method fails to deliver

Fig. 5. NLOS scenario in Colosseum. Approximated vs. re-sampled CIR.



Fig. 8. LOS scenario clustered CIR and approximated CIR.

Fig. 6. NLOS scenario clustered CIR and approximated CIR.

UE2

UE1

Fig. 7. LOS scenario propagation paths, color-coded by received power.

reasonable delay spread since it just outputs the K first
strongest paths, which are not representative of the delay
spread of the channel. These results reveal the key role of the
ML-based clustering algorithm in our channel approximation
process to deliver a reliable channel model within the scope
of the channel emulator.

V. CONCLUSIONS

In this paper, we propose a framework for creating RF
scenarios for real-time time-domain FIR filter-based emula-
tors like Colosseum. We start from an RF rich input as that

provided by professional-grade ray-tracers to obtain realistic
and present a method for optimally scaling down the input
RF data to the fewer parameters of the emulator by using
efficient clustering techniques and channel impulse response
re-sampling. We showcase our method by generating wireless
scenarios for Colosseum by using the commercial ray-tracer
Wireless InSite. Examples are provided for LTE D2D-based
LOS and NLOS scenarios on portions of the Northeastern
University main campus. For these scenarios we show the
effectiveness of our method by computing the channel path
loss and delay spread and comparing them to those of the
ray-tracer. Our results show that the proposed method results
in 0 dB error path loss, and in a significantly improved
approximation of the delay spread with respect to baseline
techniques. Future work includes checking the integrity of
the emulated scenarios via channel sounding and spectrum
analyzers, and by modeling emulated scenarios with user
mobility.
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