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Abstract—The Internet of Things (IoT) realizes a vision where
billions of interconnected devices are deployed just about every-
where, from inside our bodies to the most remote areas of the
globe. As the IoT will soon pervade every aspect of our lives
and will be accessible from anywhere, addressing critical IoT
security threats is now more important than ever. Traditional
approaches where security is applied as an afterthought and as
a “patch” against known attacks are insufficient. Indeed, next-
generation IoT challenges will require a new secure-by-design
vision, where threats are addressed proactively and IoT devices
learn to dynamically adapt to different threats. To this end,
machine learning and software-defined networking will be key to
provide both reconfigurability and intelligence to the IoT devices.
In this paper, we first provide a taxonomy and survey the state of
the art in IoT security research, and offer a roadmap of concrete
research challenges related to the application of machine learning
and software-defined networking to address existing and next-
generation IoT security threats.

Index Terms—Internet of Things, Security, Trust, Authentica-
tion, Survey, Challenges, Perspective

I. INTRODUCTION

Imagine a world where our coffee machine communicates
with our alarm clocks to produce perfectly brewed coffee in
the morning, and tells the bedroom curtains when to open
based on our past preferences; where our cars automatically
melt the ice accumulated in an overnight snow storm, our
refrigerators asks an online store to deliver us a number of
missing groceries through drones, and our doctors prescribe us
medicines using biometrical data collected from tiny sensors
implanted inside our bodies. Although 20 years ago this world
might as well have been the product of a talented sci-fi
writer, recent advances in the fields of computer science and
engineering are today allowing the dream of the Internet of
Things (IoT) to become reality.

Cisco Systems has forecast that by 2020, over 50 billion
connected “things” will be absorbed into the Internet, includ-
ing cars, kitchen appliances, televisions, surveillance cameras,
smartphones, utility meters, intra-body sensors, thermostats,
and almost anything we can imagine [1]. Accordingly, it has
been predicted that annual revenues could exceed $470B for
the IoT vendors selling the hardware, software and comprehen-
sive solutions for the IoT [2]. The application of IoT products
and services will pervade every sector and industry from smart
home and smart city, education, health-care, manufacturing,
mining, utilities, commerce, transportation, surveillance, in-
frastructure management, to supply chain and logistics. The
opportunities presented by the IoT are endless, and its full
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potential will soon be tangible since more and more devices
are getting connected to the Internet every day.

While the benefits of IoT are undeniable, the reality is
that security is not keeping up with the pace of innovation.
As the IoT will pervasively expand, it is expected that its
heterogeneity and scale will magnify existing Internet security
threats. Once humans, sensors, cars, robots, and drones are
able to seamlessly interact with each other from any side of
the globe through the IoT, a number of threats that we cannot
even imagine today will be unveiled. If necessary precautions
are not taken, malicious individuals will leverage the perva-
siveness of the IoT to disrupt communications, gain significant
monetary advantages, or even physically harm people. For
example, researchers have found critical vulnerabilities in
a wide range of IoT baby monitors [3], which could be
leveraged by hackers to carry out a number of nefarious
activities, including authorizing other users to remotely view
and control the monitor. In another development, it was proven
that Internet-connected cars may be remotely controlled [4],
including operations such as unlocking the doors or even
shutting down the car in motion. Some of the most worrisome
cases of IoT hacks, however, involve medical devices and can
have fatal consequences on patients’ health [5, 6].

In other words, in a few years we will need to entrust
the IoT network with our own lives. Thus, addressing the
security and privacy issues of the IoT has now become more
important than ever. Realizing the importance of solving this
spinous problem, the U.S. Senate has very recently proposed
the bipartisan Internet of Things Cybersecurity Improvements
Act of 2017 [7], which seeks to drive security in Internet-
connected devices. The proposed legislation requires vendor
commitments to ensure that devices do not contain known
security vulnerabilities when shipped, to ensure proper disclo-
sure of new security vulnerabilities, and to prepare remediation
plans for any IoT device where known vulnerabilities have
been discovered. This implies that IoT manufacturers will need
to be proactive and reactive as far as security is concerned.
Similar efforts have been put forth by the Department of
Homeland Security (DHS), which has recently outlined the
department’s strategic principles for securing the IoT in [8].
The DHS’s memorandum explicitly mentions that “security
should be evaluated as an integral component of any network-
connected device,” and that IoT security should be “design[ed]
with system and operational disruption in mind.” Recognizing
the need for a secure and highly dependable IoT infrastructure,
the National Science Foundation (NSF) has formulated the Fu-
ture Internet Architecture program to stimulate innovative and
creative research to explore, design, and evaluate trustworthy
future Internet architectures [9].
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Perhaps the biggest challenge in securing the IoT is that
a plethora of heterogeneous technologies, protocols, and re-
quirements will necessarily co-exist. As a consequence, a
security measure that is appropriate for one IoT device may
not be appropriate for another, and different devices will have
different requirements in terms of security levels and objec-
tives. Furthermore, it is still unclear who will be responsible
for security decisions in a world where one company designs a
device, another supplies component software, another operates
the network in which the device is embedded, and another
deploys the IoT device. Even if all the components were
developed by a single manufacturer, similar IoT devices would
be manufactured by several different companies worldwide,
which will necessarily attempt to impose themselves in their
specific market sector by customizing and isolating their
protocols and technologies.

Another crucial aspect is that most of the existing security
countermeasures are based on computation-expensive, high-
overhead algorithms and protocols [10]. However, the stringent
budget constraints impose limited memory and computational
power in IoT platforms, as well as the employment of tiny,
inexpensive batteries for energy storage. This implies that
IoT security technologies must accommodate the constraints
of IoT devices. It is also important to point out that due
to the distributed nature of the IoT, most of the generated
traffic will be wireless in nature [11]. On the other hand,
wireless networks are extremely vulnerable to a plethora
of security threats, including eavesdropping, denial-of-service
(DoS), spoofing, message falsification/injection, and jamming,
just to name a few [12], which are usually hard to predict
and significantly dynamic in nature [13]. These attacks are
relatively simple to carry out, largely because existing IoT
platforms are inflexible in terms of both software and hardware
architecture. Thus, they are not able to withstand dynamic
and complex security attacks conducted through the wireless
medium. On the other hand, to tackle existing and future
security threats in the IoT, adaptation and self-healing will
play a key role, as the next-generation IoT must be able to
face unexpected changes of the environment [10, 14].

Novel Contributions. Our vision is simple: the challenges
mentioned above cannot be addressed without a radically
different approach to the design of secure IoT systems. For
this reason, in this paper we advocate the need for a different
approach to the design of secure-by-design IoT systems, where
threats are detected through learning and mitigated through
polymorphic software and hardware architectures.

We have highlighted in bold a keyword that epitomizes
an important aspect of next-generation secure IoT systems.
Below, we briefly discuss each keyword and introduce the
related research challenges that will be discussed in this paper.

• Security-by-design. We believe that it is time to enact a
holistic, cradle-to-grave approach to IoT security, where
the system is built to be as free of vulnerabilities as
possible, through measures such as continuous testing,
authentication safeguards and adherence to best practices.
This is because addressing existing vulnerabilities and
patching security holes as they are found can be a hit-and-

miss process, and will never be as effective as designing
systems to be as secure as possible from the beginning.
Indeed, building IoT security at the design phase reduces
potential disruptions and avoids the much more difficult
and expensive endeavor of attempting to add security to
products after they have been deployed.

• Learning. Traditional security countermeasures are usu-
ally tailored to address specific threats under specific
network circumstances. However, malicious activity is
dynamic in nature and every threat cannot be addressed
beforehand. One example are cross-layer attacks [15–17],
which have activities and objectives that entail different
layers of the network protocol stack. In cross-layer at-
tacks, the adversary may choose to attack a different layer
instead of attacking the target layer directly. In this way,
small-scale (and thus, hard-to-detect) attack activities
may lead to dramatic changes on the target layer. To
address these threats, machine learning looks extremely
promising as a way to develop security systems that learn
to detect and mitigate dynamic attacks effectively.

• Polymorphic. Next-generation IoT security will need to
be deeply integrated in both hardware and application
software layers. Furthermore, bolted-on security mech-
anisms will not be able to withstand dynamic attacks
at multiple level of the network stack. For this reason,
software-defined networking could be used as a tool
to create technical designs that implement polymorphic,
context-aware security measures, able to sense and re-
spond to a range of attacks by changing the hardware and
software structures of IoT devices to respond to security
threats.

In this paper, we provide a taxonomy of existing IoT secu-
rity threats, and offer to the research community a roadmap of
novel and exciting research challenges on applying machine
learning and software-defined networking concepts to address
IoT security threats. We point out that an in-depth survey and
comparison of existing solutions to IoT security threats is not
the ultimate objective of this paper. Instead, we aim to encour-
age research efforts to lay down fundamental basis for the
development of new advanced security systems, algorithms,
and methodologies for next-generation IoT systems.

II. WHY IS IOT SECURITY SO CHALLENGING?

The notion of Internet of Things (IoT) has been used for the
first time by Kevin Ashton of Procter & Gamble, while work-
ing on a slide show in 1999 [18]. Since then, there have been
numerous attempts to define (or summarize) what the term IoT
encompasses. In a nutshell, we can define the IoT as the inter-
networking of physical devices, vehicles (also referred to as
“connected devices” and “smart devices”), buildings, and any
other item possessing an electronic component. These objects,
also called “things,” leverage network connectivity to collect
and exchange data beyond what was previously imaginable. As
far as its economic impact is concerned, it has been estimated
that the IoT has a total potential economic impact of $3.9
trillion to $11.1 trillion a year by 2025. That level of value
would be equivalent to about 11% of the world economy [19].
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One of the most disruptive features of the IoT is that it
allows objects to be sensed or controlled remotely across
existing or ad-hoc network infrastructure, creating a myriad of
opportunities for more direct integration of the physical world
into computer-based systems. This results in improved effi-
ciency, accuracy and economic benefit in addition to reduced
human intervention. Furthermore, when sensors and actuators
become involved, the IoT becomes an instance of the more
general class of cyber-physical systems [20].

A. A Brief Introduction to the Internet of Things

Although some network architectures for the IoT have
already been proposed [21–23], there is no general consensus
on the details of how the IoT should be organized. On the
other hand, most of the relevant industrial and academic parties
have agreed upon that the main components of the IoT will
be roughly orchestrated into the following components.

Arguably, the core components of any IoT architecture
are the IoT devices or things. The concept of thing is by
definition and on purpose very generic in scope. It may
include, among others, objects such as smart devices (e.g.,
tablet, smartphones), or tiny sensors embedded in a car, coffee-
maker, pencil, chair, and almost any object of common use.
The common aspect among things is that they should be
able to (i) capture different kinds of sensor data, such as
location, images, sound samples, accelerometer data, biometric
data, and barometric pressure; (ii) somehow interact with the
environment (i.e., actuator), if the application requires so; and
(iii) be uniquely identifiable and reachable from the Internet.
In a broader sense, a thing may be also seen as a human
equipped with a computing device, i.e., a human sensor, as
proposed in [24]. This allows the IoT to gather more complex
information about a phenomenon, for example, traffic status
or weather information. A myriad of IoT devices has been
already commercialized to implement extremely diverse IoT
applications; for an excellent overview of these devices, the
reader may refer to [25].

Once the sensed information has been collected, it becomes
necessary to interact with the IoT devices through an IoT
network. Similar to the concept of IoT thing, it is yet unclear
how the IoT network will exactly function. In principle,
the IoT network should be at least able to (i) handle the
traffic generated by billions of devices in a scalable and
reliable way; and (ii) adapt to the bandwidth, delay, and
throughput requirements of different IoT applications. Some
network protocols and standards have already been embraced
by the research and industry community. For example, the
IEEE 802.15.4, Bluetooth, WiFi, near-field communications
(NFC), radio-frequency identification (RFID) are already part
of almost any IoT device [14]. Besides these established tech-
nologies, the novel field of low-power wide-area networking
(LPWAN), where IoT things can communicate at a very low
bit rate for distances up to 30 kilometers in rural areas [26], is
growing at an exciting pace. Unluckily, how these extremely
diverse technologies should interact with each other has not
been agreed upon. A comprehensive classification of existing
technologies for networking in the IoT is beyond the scope

of this paper; for excellent insights on the topic, we refer the
reader to [27–29].

The back-end component of the system is the IoT plat-
form, which is a suite of software components enabling the
monitoring, management, and control of IoT devices. The IoT
platform (i) facilitates remote data collection and integration
with third party systems; (ii) exists independently between the
hardware and the application layers of the IoT technology
stack; and (iii) enables the implementation of IoT features
and functions into any device in the same way. It is also
responsible for the filtering, elaboration, and redistribution of
sensed data. This component is usually implemented by a set
of servers dedicated to the processing and storing of the sensed
data, usually in relational databases, or databases specially
adapted to the management of sensor readings. Forecasting
the IoT explosion, the most established technology companies
in the United States and abroad have proposed their own IoT
platform, from Samsung Artik Cloud to Amazon AWS IoT,
Google Cloud IoT and Microsoft Azure IoT suite, just to name
a few [30].

B. Unique Challenges in IoT Security

Although the IoT presents features that are already present
in other computer networking paradigms, we strongly believe
that the IoT presents a completely different scenario and thus
novel research challenges, especially as far as the security field
is concerned. We believe the following point summarize the
main reasons that should spur novel and transformative IoT
security research in the near future.

– Network and device size. Handling the sheer size of the
IoT will be a major problem from a security standpoint, since
existing security protocols and technologies were not designed
to scale to tens of billions of devices [31]. Furthermore,
the stringent budget constraints of IoT manufacturers impose
limited memory and computational power in IoT platforms,
as well as the employment of tiny, inexpensive batteries for
energy storage. Most importantly, since battery replacement
will be extremely difficult or impossible (for example, when
sensors are deployed on top of streetlight poles [32] or inside
the human body [33]), such process will be tremendously
expensive and time consuming. Thus, optimizing energy con-
sumption becomes fundamental. In other words, the sheer
number of devices coupled with the limitations in computation,
memory and energy capabilities [25], strongly motivate the
need for the design and adoption of novel security mechanisms
capable of providing their functionalities without imposing
excessive computational or storage burden on the IoT devices
but also designed to be highly scalable.

– Human component. Among others, seamless human-
machine interaction will be one of the most disruptive features
of the IoT. Recent advances in machine learning and artificial
intelligence will enable the IoT to learn and dynamically
support our preferences and lifestyles at home, at work and
on the move. Minuscule sensors will be able to perfectly
deliver drugs [34] and capture biometric information [35]
remotely, and provide doctors with a detailed view of our
health condition. In other words, the information exchange
will be mutual and intertwined – the IoT will learn from us
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Figure 1. A “system” overview of security threats in the Internet of Things.

and in turn, we will learn from the IoT. On the other hand,
sharing information about ourselves, our home or business
premise may become a liability in case that such information is
accessed by malicious users or unwanted third parties. Thus,
privacy and access control become a fundamental aspect in
IoT. Also, another issue lies in that humans become primary
actors of the sensing process in the IoT. On the other hand,
there is no guarantee that humans will generate information
reliably, for example, because they are not willing or not
able to [36]. To address this paramount issue, novel trust and
reputation mechanisms [10] will be needed, that will need to
scale to billions of people (current human population).

– Heterogeneity. The IoT is a complex ecosystem that
will interconnect smartphones, tablets, machine type devices
(MTDs), people, and mundane objects into a large-scale inter-
connected network. Because of this wide range of devices, a
plethora of different IoT protocols, algorithms, and standards,
will necessarily coexist, especially in the networking domain.
While some manufacturers are adopting more open IoT stan-
dards such as MQTT [37] and the Internet Engineering Task
Force (IETF) protocol stack for constrained IoT devices [38],
nowadays most of the IoT is based on legacy systems that
rely on proprietary technology, which has ultimately led to an
anti-paradigm called the “Intranet of Things” [39]. Moreover,
most of the existing research has made the assumption that
there is a static association between the resources of the IoT
and the surrounding real-world entities. On the contrary, the
IoT environment is extremely heterogeneous and dynamic as
IoT devices may experience unpredictable mobility, which
results in sudden variations of communication capabilities
and position over time [40]. Such an environment makes the
resolution of available IoT devices a challenging task.

III. TAXONOMY OF IOT SECURITY THREATS

While most of the IoT security threats are going to be
inherited from the current Internet, a number of new threats
that have yet to be discovered will also necessarily be unveiled

in the near future. On the other hand, we can expect that the
main attack strategies will be organized as illustrated in Figure
1, which also depicts the IoT scenario under consideration.

As discussed previously, the main target of an IoT system is
to collect data from IoT devices deployed in strategic places,
and if required, react to such information by controlling the
environment accordingly (e.g., through actuators). We divide
the data collection process in three steps, namely i) IoT
authentication, ii) IoT wireless networking, and iii) IoT data
aggregation and validation.

A. IoT Device Identification and Authentication

Before being able to connect and exchange data with the IoT
system, an IoT device must first be identified, and authenticate
itself to prove that it is entitled to join the IoT system and
transmit/receive data [41, 42].

Regarding identification, in [43] the authors present IoT
Sentinel, a system capable of identifying the types of de-
vices introduced to an IoT network and enforcing mitiga-
tion measures for device-types that have potential security
vulnerabilities. The system does so by controlling the traffic
flows of vulnerable devices, thus protecting other devices in
the network from threats and preventing data leakage. Zenger
et al. [44] proposed a vicinity-based pairing mechanism that
delegates trust from one node to another based on physical
proximity. Messaging between devices can be authenticated
using multiple communication channels (e.g. Bluetooth +
NFC) to ensure secure pairing [45]. Another approach to
device identification is device fingerprinting, which leverages
imperfections of hardware components (i.e., clock skew, RF
signature, phase noise, and so on) to uniquely identify different
wireless devices [46].

Given its paramount role toward an effective and efficient
IoT, research on IoT authentication has gained a lot of traction
in the research community over the last years. Traditionally,
authentication has been mostly implemented by leveraging
public-key cryptography (PKC). On the other hand, most of
PKC authentication schemes are not amenable to be used
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in IoT scenarios, as PKC relies on computation-expensive
modular exponentiation. For this reason, a significant number
of authentication schemes based on lightweight encryption
have been proposed. For an exhaustive survey on the topic,
the reader may refer to [47].

Elliptic curve cryptography (ECC) [48] has been proposed
as a valid alternative to PKC to address the constrained nature
of IoT devices. ECC-based schemes have better performance
thanks to the smaller key size – 160-bit ECC achieves the
same security level as 1,024-bit RSA. However, ECC-based
ones also require a certification authority (CA) to maintain a
pool of certificates for users’ public keys, and the users need
extra computation to verify the certificates of others. Among
recent work based on ECC, in [49] the authors present an
authentication and access control method which establishes the
session key on the basis of ECC. This scheme defines access
control policies that are managed by an attribute authority,
enhancing mutual authentication among the user and the
sensor nodes, as well as solving the resource-constrained issue
at application level in IoT.

A number of IoT-tailored authentication schemes using
alternative encryption methods have also been proposed [50].
For example, an authentication protocol for IoT is presented in
[51], using an encryption method based on XOR manipulation.
A user authentication and key agreement scheme also based on
XOR computations was proposed in [52] and then improved
by [53], which enables a remote user to securely negotiate
a session key with an IoT device, using a lean key agree-
ment protocol. Baskar et al. recently proposed a lightweight
encryption algorithm that uses a chaos map-based key [54],
which was also implemented on a Field Programmable Gate
Array (FPGA), Its performance is also compared with other
lightweight algorithms in the literature. The algorithm is
capable of achieving maximum throughput of 200 kbit/s on
an FPGA with 1550 logic gates and 128 bit of key size.

Although the design of bullet-proof authentication mecha-
nisms is always desirable, it generally implies high computa-
tional cost and/or trusted entities, a prerequisite that may be
not applicable to several scenarios. For this reason, the Internet
Engineering Task Force (IETF) has developed the Constrained
Application Protocol (CoAP) [55], a lightweight scheme
specifically tailored for energy- and resource-constrained IoT
applications that relies on a dedicated security layer. This
security layer, namely Datagram Transport Layer Security
(DTLS), is built on top of the UDP protocol and provides
IoT devices with several security features, together with a re-
liable authentication framework [56]. Authentication is usually
achieved through handshake messages. For example, DTLS is
leveraged in [57] to attain two-way authentication. In [58] the
authentication process of DTLS is delegated to an external
server that considerably offloads the network by reducing
the overhead due to the handshake process. To provide au-
thentication at the Internet layer, especially in the context of
6LoWPAN systems, IPsec [59] has been identified as a suitable
security framework [60]. Despite the fact that these works
leverage IPsec, it has been shown that the energy consumption
caused by the authentication mechanism envisioned by IPsec
causes non-negligible energy consumption [61], which might

not satisfy the energy-efficiency constraints required of most
IoT applications.

The approaches discussed above are mainly tailored to
provide authentication at the higher levels of the protocol
stack. On the other hand, a promising and effective approach
relies on the lower physical layer to provide authentication
through RF fingerprinting [62]. Similar to human fingerprints,
IoT devices are characterized by peculiar and unique features
such as rising time of the RF signal and non-linearities.
These peculiarities can be exploited to unequivocally identify
a single transmitting device with high probability [62, 63].
The feasibility of RF fingerprinting has been demonstrated in
[64], where a fingerprinting-based authentication system has
been implemented on Raspberry Pi boards and cloud services.
Though authentication of IoT devices is always desirable,
there are some relevant applications of the IoT paradigm, such
as medical and vehicular networks, where authentication is
vital to guarantee the reliability of the network [65]. Both
applications involve the transmission of sensitive data such
as patients heart-rate and blood pressure [65, 66], or vehicle
speed and traffic-related data [67].

A malicious node might be able to access the IoT network
and generate fictitious and potentially dangerous messages. As
an example, malicious users can harm patients by sending
fake medicine release messages to IoT devices [66], or can
trigger the automatic braking system by sending fake accident
alerts to smart-vehicles [68]. It is clear that those scenarios
require a highly reliable and secure authentication mechanism.
A solution for authentication in health-care IoT scenarios
is proposed in [69], where RF fingerprinting is employed
together with biometric information to provide effective au-
thentication in health-care IoT applications. Machine learning
is used in [70] to design a risk-based authentication scheme
that adapts the authentication protocol according to different
risk levels. Similarly, a variety of authentication mechanisms
for vehicular networks have been proposed in the literature by
using electronic fingerprints of on-board devices [68].

Finally, some research efforts have focused on the design
of authentication algorithms that mutually verify the identity
of IoT devices. In fact, an imposter malicious node can
aim to get access to the IoT network to eavesdrop ongoing
communications and/or to take control over both the IoT
devices and the IoT platform. Although desirable, mutual
authentication comes at a cost in terms of overhead and com-
putational complexity, which generally result in higher energy
consumption. For this reason, much effort has been devoted
to the design of lightweight and effective algorithms, such as
[71–75]. For example, in [74] the authors exploits CoAP to
design a mutual payload-based authentication scheme which
replaces the native DTLS security framework with a lower-
complexity authentication mechanism. Instead, a scalable and
low-complexity approach is proposed in [75] where imperfect
shared keys are considered.

B. IoT Wireless Networking

Once the identity of the IoT device has been established, it
becomes necessary to guarantee effective and efficient wireless
communication between (i) the IoT devices themselves, if
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required; and (ii) the IoT devices and the IoT platform
located in the cloud. To this end, depending on the particular
application and the desired communication range, different
wireless technologies may be used. Since TCP/IP will be the
primary network/transport layers used in the IoT, researchers
have been focused on addressing threats at the medium access
control (MAC) and physical (PHY) layers [12, 76].

Since wireless transmissions are for the most part broadcast
in nature, they are extremely vulnerable to eavesdropping
[77], denial-of-service (DoS) [78], and jamming [13], among
others. Although countermeasures for such attacks have been
proposed, they are tailored to address only specific behavior
of attackers [79] and specific wireless technologies [80], or
employ cryptography solutions not applicable in the resource-
constrained environment of the IoT.

Security of IoT wireless networking presents unprecedented
challenges. This is because the IoT will use a plethora
of different wireless technologies, e.g., near-field, intra-body
communications, WiFi, Bluetooth and ZigBee [81]. In addition,
long-range technologies such as Sigfox [82] and LoRa [83] are
expected to become major players in the near future [26]. The
unprecedented diversity in the IoT networking environment
calls for security solutions that are applicable to any IoT
context and are flexible enough to deal with dynamic attack
strategies and different technologies.

One of the most disrupting attacks to wireless communi-
cations is jamming, which is capable of rendering infeasible
all ongoing communications within the attacked area. Thus,
anti-jamming countermeasures for IoT applications have been
widely investigated in literature [84]. Given the distributed
nature of the network, game theory has been identified as
a well-suited mathematical framework to provide effective
anti-jamming mechanisms [85],where IoT devices act as the
players of a game aiming at either avoiding or mitigating the
disruptive attacks of the jammer. Other approaches rely on tra-
ditional jamming-proof mechanisms such as relaying [86, 87],
spread-spectrum [88]and frequency hopping technologies [89].

Alongside jamming attacks, malicious entities may use
eavesdropping to obtain sensitive and private information
by monitoring ongoing transmissions between IoT nodes.
Such an attack has been shown to be effective not only
against traditional wireless transmission techniques such as
WiFi and Bluetooth, but also against transmissions based
on visible light communications (VLC) [90], which will be
key in smart home applications. The most common approach
to counterattack eavesdropping consists in the encryption of
transmitted data [91]or the use of temporary pseudonyms or
nicknames [92]. However, it is worth mentioning that other
approaches have been proposed. For example, the use of
relay nodes allows to generate new routing paths and bypass
the eavesdropper.Although jamming is generally associated to
disruptive attacks by malicious users, there are different cases
where friendly jamming can, instead, be profitably exploited
to improve the security level of the ongoing communications.
Specifically, it is possible to take advantage of friendly jam-
ming to reduce the signal-to-noise ratio level at the malicious
node, so that an eavesdropper may not be able to decode
transmitted data [93, 94].

A major concern in IoT networks consists in their vulnera-
bilities with respect to Distributed Denial-of-Service (DDoS)
attacks. Indeed, the most disruptive attacks to the Internet
have been carried out by exploiting IoT devices and their
security breaches to generate bot-nets which consequently start
DDoS flooding attacks [95]. It has been also shown [96] that
a single compromised light bulb connected to the Internet can
start a chain reaction and turn ON/OFF all the light bulbs of
an IoT-enabled smart city. From the above discussions, it is
straightforward to conclude that proper solutions are needed
to avoid the generation of IoT-based bot-nets, and to protect
the IoT system against attacks which aim at modifying the
behavior of the whole network. Accordingly, several solutions
have been proposed to either detect ongoing DDoS attacks
[97], and to prevent them [98].

Other security threats which are worth mentioning are the
replay and Sybil attacks [99].Replay attacks are aimed at
generating congestion and collisions in the network by eaves-
dropping and re-transmitting several copies of the same packet
To avoid this attack, timestamps [100] may be employed.
However, such an approach might be not completely secure
if the attacker is capable of generating legitimate timestamps.
Sybil attacks are instead targeted at generating fake virtual IoT
devices which transmit synthetic packets through the network
[101]. By means of Sybil attacks, malicious users can generate
and transmit fake or corrupted measurements and messages to
subvert the proper functioning of the network. To avoid such a
threatening attack, intrusion detection mechanism [102, 103]
have been proposed.

C. IoT Data Aggregation

Once the data generated by the IoT devices has been
collected, it becomes necessary to infer knowledge based
on such data. On the other hand, the information sent by
two or more IoT devices about the same event is likely
to be conflicting, for example, due to a noisy environment,
malfunctioning, or network delay, among others. Furthermore,
malicious or compromised IoT devices may also generate
on purpose fake information and feed it to the system, to
compromise the application’s functionality at the information
level. This becomes an extremely important issue when hu-
mans are directly contributing to the data collection process
through their smart devices, such as in participatory sensing
[104]. For example, in March 2014 students from Technion-
Israel Institute of Technology successfully simulated through
GPS spoofing a traffic jam on the Waze mobile application.
The attack lasted for hours, causing thousands of motorists to
deviate from their routes [105]. Similar Sybil attacks have also
been successfully studied in the United States [106].

Over the years, the concept of trust and truth have been
successfully employed in the computing, communication and
networking fields [107]. In this vision, each network compo-
nent is seen as a human, whereas the network itself may be
seen as a society where decisions are made based on inputs
from each node. This idea is often referred to as technological
trust, a quantitative measure of trustworthiness for interactions
between entities [108]. In the context of the IoT, applications
are offered based on the information provided by the IoT
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devices, either through mobile devices or automated sensors.
Therefore, the trustworthiness of the overall contributions
from IoT devices is fundamental to guarantee the Quality of
Information (QoI) of the IoT system itself.

For this reason, the fields of trust estimation and truth
discovery have recently attracted enormous attention from the
data mining and crowdsourcing communities [109, 110], due
to its ability to estimate the reliability degrees of participants
and thus infer correct knowledge based on the data without any
supervision. On the other hand, existing algorithms were not
designed to deal with the unprecedented number of devices
that are expected to populate the IoT network. Specifically,
it has been shown that the above approaches do not well-
scale with the number of devices [111], and cannot directly
be applied to the IoT environment. Accordingly, the research
community has recently devoted significant effort on the
design and assessment of algorithms that enjoy both low
computational complexity and scalability.

The original concept of trustworthiness has its origins in
human society. According to the Merriam-Webster dictionary
[112], trust is the “[...] belief that someone or something is
reliable, good, honest, effective, etc.” In other words, trust is a
qualitative way of expressing whether a particular interaction
with an entity is going to be dependable, given evidence of
outcomes of prior or current behaviors and interactions. Since
IoT devices have limited interaction capabilities, estimating
their trustworthiness is significantly challenging. Among oth-
ers, fuzzy logic has been identified as an effective mechanism
to evaluate the trustworthiness of IoT devices. By exploiting
fuzzy logic sets, [113] has shown that it is feasible to design
scalable trust estimation mechanisms for IoT applications. A
similar approach is presented in [114], where authors enforce
cooperation among things to develop a fuzzy-based reputation
system that effectively allows to evaluate trustworthiness of
IoT devices. Human relationships are leveraged in [115] to
design dynamic trust estimation mechanisms which account
for social affinities.

Truth discovery is generally related to trustworthiness, as
trusted devices are expected to generate reliable and accurate
information. However, due to the exorbitant number of in-
terconnected IoT devices, scalable trust discovery processes
are required as traditional solutions for other networking
applications are expected to fail [111]. For example, [111]
leverages trustworthiness and clustering algorithms to provide
a trust discovery mechanism that also relies on problem scale
reduction to achieve scalability. However, as outlined in [116–
118] truth might not be unique and multiple truth could
exist. Accordingly, proper truth discovery mechanism must
be designed by exploiting, for example, Bayesian approaches
[116] or predictions and implications [117]. Given the huge
amount of data generated by the IoT network, data mining and
machine learning approaches can be proficiently leveraged to
provide improved services to citizens such as traffic manage-
ment and e-health monitoring [119].

IV. RESEARCH CHALLENGES

Although the topic of IoT security is gaining increasing
traction in the networking community, we believe that some

important research challenges related to the field still re-
main substantially unexplored. We summarize and discuss
the challenges below, hoping that the following roadmap
will eventually stimulate discussion and further research and
development in the IoT research community at large.

A. Toward Secure-by-design IoT Systems

The most important takeaway from the previous discussion
is that, as yet, IoT security has been so far approached in an
ad-hoc fashion, where countermeasures are not planned for
beforehand but instead temporary measures (i.e., “patches”)
are put in place when an attack is discovered. Considering
that the IoT will work at a scale in the order of billions of
devices, these patches are not adequate to address the need of
homogeneous, standard, widely-adopted security procedures.

Our vision is the following. We believe that the complexity
and the scale of the IoT require the enactment of a novel,
holistic approach to IoT security, where security is approached
in a proactive fashion and threats are addressed in a scalable
and reliable manner. The IoT technology landscape of today
is too complex and disruptive for security to be more than a
set of loosely-integrated solutions. On the contrary, security
must be deeply embedded in every stage of the production
cycle, from product design to development and deployment.
Too often, security tends to be an afterthought in development,
and while there are exceptions, in many cases economic drivers
or lack of awareness of the risks cause businesses to push IoT
devices to market with little regard for their security. For these
reasons, the concept of security-by-design [120] should be a
main driving force in future IoT security research.

Security-by-design is an approach that has been traditionally
applied to software and hardware development [121–123]. It
seeks to make systems as free of vulnerabilities and impervi-
ous to attack as possible before the system is actually released
to the market. This is usually achieved through measures
such as extensive testing and adoption of best practices in
programming. The security-by-design model contrasts with
less rigorous approaches including security-through-obscurity,
security-through-minority and security-through-obsolescence.
Recently, world-renowned companies such as VMWare and
Cisco have started embedding security-by-design concepts in
their products [124, 125]. For example, VMWare proposes
a system called AppDefense, which is based on the concept
that chasing observed bad actions is not fruitful in the long
run. Specifically, it delivers an intent-based security model
that focuses on learning what the applications should do –
the “known good” – rather than what the attackers do – the
“known bad”. Similarly, Cisco’s Identity Services Engine uses
a policy-based approach to simplify security, reduce risk, and
provide end-to-end security.

Conversely from other technological fields, achieving
security-by-design in the IoT is significantly challenging,
given the network scale and heterogeneity of the IoT devices.
For this reason, we need a practical yet comprehensive and
effective framework that will help driving the adoption of
security-by-design principles in the fast-paced, ever-changing
IoT landscape. To this purpose, we propose a novel framework
where security is seen as a control problem of an IoT dynamic
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system. In short, the IoT dynamic system will possess several
inputs and a single output, which is the information generated
by the IoT application and used to infer knowledge about
events of interest. The output of the system is also used
as feedback to “control” the IoT system and the environ-
ment itself, through the implementation of security measures
(mitigation module) that are guided by a security analysis
(detection module). Figure 2 illustrates a block diagram of the
components of our envisioned IoT security framework. In this
scenario, inputs may be both legitimate and malicious (i.e.,
security attacks conducted by ill-intentioned entities).

Mitigation
Module

IoT
Dynamic
System

Detection
Module

Malicious
Input

IoT
Input

IoT
Output

Figure 2. The IoT Dynamic System Control Problem.

The secure-by-design approach to IoT security offers sev-
eral advantages with respect to previous paradigms. First, it
provides a framework that abstracts from the specific security
threat and tackles classes of problems, rather than a series
of specific threats. Second, it stimulates IoT system designers
to be proactive in considering security, and to come up with
a security design plan that formalizes and addresses threats
before their device/technology is released on the market. Third,
it is flexible and scalable, since the control and learning
modules can be designed and implemented both at the device
and the system level to address different security threats, as
we will discuss later.

Although the secure-by-design approach provides advan-
tages, it also comes with novel and exciting technical chal-
lenges. We recognize two main research challenges toward
the implementation of our IoT security framework, which are
summarized below.

1) Learning to Detect and Mitigate IoT Security Threats.
In every control and learning problem, the inputs and
the state of the system must be properly modeled and
formalized. This aspect is significantly challenging in the
context of the IoT, as devices may generate significantly
heterogeneous data (i.e., multimedia, text, sensory). Af-
ter modeling states and inputs, it is necessary to design
mechanisms able to detect and mitigate threats based
on the current state and input. Furthermore, ML algo-
rithms are data-hungry, meaning that they become more
reliable as more and more data is used for training and
testing [126]. Despite the importance of the issue, the
research community still lacks large-scale datasets that
collect information regarding attack activities. Although

there have been efforts toward collecting crowd-sourced
datasets in the wireless and mobile networking commu-
nity, for example, as part of the Crawdad project [127],
we need to collect and label data describing various IoT
attacks as discussed in Section III.

2) Design of Polymorphic Hardware and Software Modules
to Enact Mitigation. When a threat has been detected,
it is necessary to enact countermeasures so as to swiftly
mitigate the effect of the ongoing attack. This critical
aspect requires the design of hardware and software
modules able to “polymorphically” adapt to different
requirements and thus swiftly put in action the necessary
counterattack strategies.

As we have already outlined in Section II, IoT systems are
extremely heterogeneous and dynamic in nature. This aspect,
joint with the hardly predictable behavior of malicious entities,
hinders significantly the design and development of effective
threat detection systems. In this paper, we advocate the use of
machine learning (ML) [128] and software-define network-
ing (SDN) [129] to overcome these issues and implement
autonomous and adaptive detection mechanisms for our IoT
security framework. We provide a brief survey of the existing
work below.

1) Existing Work on Machine Learning and Software-
defined Networking for IoT Security: Recently, machine learn-
ing techniques have exhibited unprecedented success in clas-
sification problems in areas such as speech recognition [130],
spam detection [131], computer vision [132], fraud detection
[133], and computer networks [128], among others. One of
the main reasons behind machine learning’s popularity is
that it provides a general framework to solve very complex
classification problems where a model of the phenomenon
being classified is too complex to derive or too dynamic to
be summarized in mathematical terms.

Although ML can be considered a mature field, few works
have applied ML techniques to solve issues related to IoT se-
curity. Recently, Zhang et al. have proposed a framework [17]
to detect and mitigate cross-layer wireless attacks based on the
application of Bayesian learning. Specifically, the framework
establishes a probabilistic relation between an hypothesis (i.e.,
the attack is likely taking place) and the supporting evidence
(i.e., there are signs of attack activities). This allows to update
the hypothesis dynamically when new evidence is available.
Therefore, the more evidence is gathered, the more accurate
is the resulting hypothesis. The authors demonstrate through
experiments and simulations that even small-scale malicious
activities can still be detected with high confidence, as long
as enough evidence is accumulated.

Cañedo and Skjellum use neural networks to develop a
learning mechanism to assess the validity of information
generated by IoT devices [134]. Similarly, in [135] the authors
propose ARTIS, an artificial immune system that leverages ML
algorithms to develop an adaptive immune system. Among
the various properties, such as error tolerance, distributed
computing and self-monitoring, ARTIS also makes possible
to develop adaptive applications whose code evolves and
branches according to past observations and experiences.
However, the evolved code might be wrong and potentially
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vulnerable to security attacks, thus ARTIS also provides
a learning-based anomaly detection mechanism to identify
anomalies in the evolved code and in the data traversing the
system. ML is also used in [136, 137] to develop an intelligent
system that automatically detects security threats. Recently, in
[138] authors use machine learning to develop a vulnerability
assessment mechanism to identify and classify IoT devices
according to their trustworthiness.

The development of algorithms and protocols based on
software-defined networking [139] has gained tremendous mo-
mentum in the networking research community over the last
years. In software-defined networks, components that have
been typically implemented in hardware (e.g. mixers, filters,
amplifiers, network protocols, etc.) are implemented in soft-
ware, to ensure fast reconfigurability and adaptation to critical
channel conditions (e.g., significant multipath, Doppler effect,
or path loss). The main downside of pure software-based
solutions is that they completely trade-off reconfigurability
for efficiency. On the other hand, we have recently seen a
tremendous rise of wireless platforms based on the system-
on-chip (SoC) concept [140]. These SoC platforms allow the
design and implementation of customized hardware on the
field-programmable gate array (FPGA) portion of the platform
to achieve better performance [141].

The software-defined paradigm has gained increasing trac-
tion in the IoT research community [142–144]. Indeed,
software-defined solutions ease the implementation of network
elements and functions that were traditionally implemented
and/or executed in hardware. Such process has been shown
to be more energy-efficient, robust, scalable and adaptable
than traditional hardware-based implementations [143, 145].
Furthermore, it allows for fast and efficient control and man-
agement of the IoT ecosystem, and has also paved the road for
polymorphic and reconfigurable IoT systems. It is worth noting
that IoT systems have several critical features (e.g., density
of things, heterogeneity) that make traditional SDN solutions
tailored for internet and data-center environments inapplicable
[146]. Accordingly, IoT-specific SDN solutions have been
proposed in the literature. As an example, [147] proposes an
SDN-based IoT management framework that provides data
traffic scheduling and routing mechanisms based on both
network calculus and genetic algorithms. As an example,
reprogrammability of IoT devices has been demonstrated in
[148] where RFID devices have been successfully used to
develop a generic and reprogrammable sensing platform for
IoT applications.

B. Model of IoT Network Inputs and Attacks

In order to work properly, machine learning (ML) algo-
rithms need to have a clear and consistent formalization of
the inputs (i.e., the data), states (i.e., attack/not attack), and
outputs (i.e., processed data). Specifically, a clear definition of
the input is fundamental to apply the concept of dimensionality
reduction, which represents the process of feature selection
and feature extraction [149]. Feature selection approaches try
to find a subset of the original variables (also called features
or attributes). There are three strategies: the filter strategy (e.g.
information gain), the wrapper strategy (e.g. search guided by

accuracy), and the embedded strategy (features are selected
to add or be removed while building the model based on
the prediction errors). In some cases, data analysis such as
regression or classification can be done in the reduced space
more accurately than in the original space.

Another major challenge is the proper definition of what
an attack is and how to represent it. In other words, can we
formalize and characterize (i) the “good” IoT network state
(i.e., normal functioning) versus (ii) the “bad” IoT network
state (i.e., attack is taking place)? Efforts of this sort have
been conducted in [17], where the authors leveraged Bayesian
learning to establish a relation between the probability that
an attack is taking place and the evidence supporting it.
On the other hand, we need to further investigate how to
formalize classes of attacks and their effect of the network
state. Furthermore, if an attacker has access to training data,
or knows how the ML algorithms are trained, the attacker
could eventually rely on this knowledge to tune its attack
accordingly. In most cases, it is reasonable to assume that
such information would not be available, since (i) supervised
ML algorithms would be trained before deployment of the
IoT nodes; and (ii) unsupervised ML algorithms would rely
on parameters that could be encoded on the hardware chip of
the IoT devices. However, the impact of such kind of attacks
should be investigated by further research.

C. Explore the Use of Reinforcement Learning

An area that is yet to be explored is the opportunity
of leveraging unsupervised learning to implement secure-by-
design IoT systems. Specifically, reinforcement learning (RL),
which is ML inspired by behaviourist psychology, deals with
how agents ought to take actions in an environment so as
to maximize a cumulative reward. The problem, due to its
generality, is studied in many other disciplines, such as game
theory, control theory, operations research, information theory,
simulation-based optimization, multi-agent systems, swarm
intelligence, statistics and genetic algorithms, among others
[150]. The advantage of RL for the IoT context is that there
is no need for training or datasets, as the nodes can learn by
themselves what is the right strategy to achieve the maximum
reward according to the current state.

When modeling a problem with the RL framework, the
environment is typically formulated as a Markov decision
process (MDP). The main difference between the techniques
based on dynamic programming and RL algorithms is that the
latter do not need knowledge about the MDP and they target
large MDPs where exact methods become infeasible. Rein-
forcement learning differs from standard supervised learning
in that correct input/output pairs are never presented, nor sub-
optimal actions explicitly corrected. Instead the focus is on on-
line performance, which involves finding a balance between
exploration (of uncharted territory) and exploitation (of current
knowledge) [151].

There have been a few number of attempts to leverage RL to
model wireless networking problems, especially in the context
of cognitive radio networks [152–154]. One of the most widely
used forms of RL is Q-Learning [155]. However, it is still
unclear how these technologies work in the context of IoT.



IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, JANUARY 2018 10

This is because RL suffers from the state-space explosion
problems, which may make most of the existing RL algorithms
inapplicable to the IoT context if undealt with.

D. Blockchain for Decentralized IoT Security

Although being originally designed to store and validate
cryptocurrency transactions, the blockchain has recently at-
tracted much in the IoT networking research community
to address scalability and security problems [156–162]. The
blockchain technology relies on decentralized, and thus scal-
able, consensus mechanisms that check, verify and store
transactions in the blockchain while guaranteeing protection
against data tampering attacks [163]. Given the sheer amount
of IoT devices, the blockchain undoubtedly offers a suitable
solution to the above problems.

The potential of the blockchain for IoT applications has
been shown in [162], where the blockchain is used to provide a
privacy-preserving IoT commissioning platform. Specifically,
in [162] the data generated by IoT devices is made accessible
from external service providers, while at the same time guaran-
teeing the anonymity of IoT devices and generating revenues
for the owners of the devices. Since the blockchain guarantees
protection against data tampering, it can be effectively used to
verify the integrity and validity of software. For example, in
[164] the blockchain is used to validate the different firmware
versions embedded on IoT devices. The blockchain has also
been exploited in both smart homing [159] and industrial
scenarios [161] to protect local IoT networks and regulate
traffic through distributed authentication mechanisms. Those
works, however, showed that the blockchain inevitably gen-
erates computational overhead due to the blockchain mining
algorithms, which ultimately increases both energy consump-
tion and processing delay.

Furthermore, one of the major weaknesses of the blockchain
is the so-called 51% attack [165]. If any malicious node
possesses at least 51% of the overall computational power,
it might be able to monopolize the consensus mechanism and
corrupt the integrity and trustworthiness of the whole network.
The above discussion clearly shows that, while the blockchain
might represent a true game changer in IoT applications, it is
still unclear how we can efficiently adapt its mechanisms to
constrained and pervasive networks such as the IoT.

V. CONCLUSIONS

The IoT is revolutionizing the world around us by empow-
ering every device, object and person to be connected to the
Internet. With such massive presence of interconnected things
deployed all around us, and in some cases inside us, the IoT
offers exciting yet significant security research challenges that
need to be addressed in the upcoming years. In this paper,
we have provided our novel perspective on the issue of IoT
security, which is based on a unique mixture of the notions
of security-by-design, polymorphism, and software-defined
networking. We have categorized and summarized the relevant
state-of-the-art research, and proposed a roadmap of future
research issues. We hope that this work will inspire fellow
researchers to investigate topics pertaining to IoT security and
keep on the race for a more secure technological world.
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[53] M. S. Farash, M. Turkanović, S. Kumari, and M. Hölbl, “An Efficient
User Authentication and Key Agreement Scheme for Heterogeneous
Wireless Sensor Network Tailored for the Internet of Things Environ-
ment,” Ad Hoc Networks, vol. 36, pp. 152–176, 2016.

[54] C. Baskar, C. Balasubramaniyan, and D. Manivannan, “Establishment
of Light Weight Cryptography for Resource Constraint Environment
Using FPGA,” Procedia Computer Science, vol. 78, pp. 165–171, 2016.

[55] T. Fossati and H. Tschofenig, “Transport Layer Security
(TLS)/Datagram Transport Layer Security (DTLS) Profiles for
the Internet of Things,” Transport, 2016.

[56] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the Internet
of Things: A Standardization Perspective,” IEEE Internet of Things
Journal, vol. 1, no. 3, pp. 265–275, 2014.

[57] T. Kothmayr, C. Schmitt, W. Hu, M. Brünig, and G. Carle, “DTLS
Based Security and Two-way Authentication for the Internet of Things,”
Ad Hoc Networks, vol. 11, no. 8, pp. 2710–2723, 2013.

[58] R. Hummen, H. Shafagh, S. Raza, T. Voig, and K. Wehrle, “Delegation-
based Authentication and Authorization for the IP-based Internet of
Things,” in Proceedings of the IEEE International Conference on
Sensing, Communication, and Networking (SECON). IEEE, 2014,
pp. 284–292.

[59] N. Doraswamy and D. Harkins, IPSec: the New Security Standard for
the Internet, Intranets, and Virtual Private Networks. Prentice Hall
Professional, 2003.

[60] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, and U. Roedig,
“Securing communication in 6LoWPAN with compressed IPSec,” in
Proceedings of the International Conference on Distributed Computing
in Sensor Systems (DCOSS). IEEE, 2011, pp. 1–8.
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