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Abstract—Energy consumption represents a major part of the
operating expenses of mobile network operators. With the den-
sification foreseen with 5G and beyond, energy optimization has
become a problem of crucial importance. While energy optimiza-
tion is widely studied in the literature, there are limited insights
and algorithms for energy-saving techniques for Integrated Ac-
cess and Backhaul (IAB), a self-backhauling architecture that ease
deployment of dense cellular networks reducing the number of
fiber drops. This paper proposes a novel optimization model for
dynamic joint routing and energy optimization in IAB networks.
We leverage the closed-loop control framework introduced by the
Open Radio Access Network (O-RAN) architecture to minimize the
number of active IAB nodes while maintaining a minimum capacity
per User Equipment (UE). The proposed approach formulates the
problem as a binary nonlinear program, which is transformed into
an equivalent binary linear program and solved using the Gurobi
solver. The approach is evaluated on a scenario built upon open data
of two months of traffic collected by network operators in the city
of Milan, Italy. Results show that the proposed optimization model
reduces the RAN energy consumption by 47%, while guaranteeing
a minimum capacity for each UE.

Index Terms—Energy Optimization, Integrated Access and
Backhaul, O-RAN, 5G

I. INTRODUCTION

Ultra-dense deployment and millimeter wave (mmWave) have
been portrayed as the solution to meet the stringent requirements
standardized with 5G in terms of data rates [1]. As actually
proven by many studies, mmWave is capable of providing multi-
gigabit connectivity to User Equipments (UEs) [2], [3], and
Integrated Access and Backhaul (IAB) has been proven to be an
effective way to reduce the deployment costs [4]. This technol-
ogy, introduced in 3GPP Release 16, allows, in fact, connecting
only a subset of the Next Generation Node Bases (gNBs), called
IAB-donors, to the fiber backhaul while the rest of the gNBs,
called IAB-node, rely on in-band wireless communication to
reach one of the donors, forming a multihop wireless network.
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By dynamically activating and deactivating gNBs with respect
to the current load of the network, it is possible to reduce
the energy footprint of the system, switching off IAB-nodes
that are not strictly necessary to match the requested level of
service. This is of critical importance since energy consump-
tion accounts for up to 60% of the Operational Expenditure
(OpEx) [5]. Research on energy optimization techniques for
traditional networks usually assumes that all gNBs are connected
to the fiber backhaul. The presence of wireless-only IAB-nodes,
however, increases the complexity of the scenario. In fact, the
deactivation of an IAB-node might disrupt the service of another
IAB-node that is relying on it. Moreover, IAB-nodes need to
support periodic wake-up to update their radio state in order to
dynamically change the topology when needed.

Thanks to the effort led by the Open Radio Access Network
(O-RAN) Alliance, which has opened the Radio Access Network
(RAN) architecture by introducing interfaces such as the E2 and
O1 and the concept of RAN Intelligent Controller (RIC) [6], it
is now possible to integrate custom closed-loop control logic in
the RAN. This has been already studied for several applications,
such as network slicing [7], and, more recently, an extension of
the O-RAN architecture has been proposed for IAB [8].

Our novel optimization approach takes advantage of this
closed-loop control framework to overcome the limitations dis-
cussed above and dynamically minimize the number of active
IAB-nodes, while maintaining a minimum capacity per UE. The
optimization—based on input data that can be obtained through
O-RAN interfaces—generates a topology tree over which we
route the traffic from each UE to the IAB-donor, deactivating
IAB-nodes that are not needed and distributing UEs across the
available gNBs.

To the best of our knowledge, joint routing and energy opti-
mization on multi-hop IAB topologies has never been studied
before. Most studies focus on optimizing the IAB topology with
different constraints, such as in [9] where the fiber-deployment
cost is minimized or in [10] where the UE data rates are maxi-
mized. Other studies, more focused on power and energy-related
optimization of IAB networks, exist, but they either optimize the
energy consumption after the topology and routing have been
chosen, such as in [11], or they are restricted to a single-hop
architecture, such as in [12], where a low energy multiple access
scheme is designed.



Optimization for energy consumption is a common concern in
both this study and Wireless Sensor Networks (WSNs). How-
ever, the goals differ: WSNs aim to extend network lifetime
due to their battery-powered nodes, as in [13], while our grid-
powered nodes target different optimization criteria.

Hence, in this paper, we fill this gap by formulating the
problem as a binary nonlinear program. Since its continuous
relaxation is non-convex, it is not solvable using off-the-shelf
solvers, therefore we show it can be transformed into an equiv-
alent binary linear program, which we then solve using the
Gurobi solver. The approach is evaluated on a scenario built
upon open data of two months of traffic collected by network
operators in the city of Milan, Italy, [14] together with detailed
morphological data of the same area. Our optimization model
manages to perfectly tune the number of active gNBs with the
number of UE, reducing by 47% the total number of hours the
gNBs (i.e., IAB-nodes) had been active, while maintaining a
minimum downlink capacity for each UE equals to 80Mb/s. This
shows how introducing dynamic optimizations enabled by the O-
RAN architecture can effectively target improvements in energy
efficiency.

II. SYSTEM MODEL AND OPTIMIZATION

Let us first introduce the problem formally. We start from
a weighted directed graph G = (V , E), called measurements
graph, whose nodes can be either IAB-nodes or UEs. We denote
the set of UEs as U ⊂ V and the IAB-donor as t ∈ V . Each edge
(u, v) of this graph represents a potentially usable wireless link
between each node and it is weighted by its available capacity
(c(u, v)), which depends on the channel quality. Since the goal
is to find a tree representing the routing from each UE to towards
the donor t, the edges of the graph will be directed accordingly.
Access links (originating from the UEs) will always have UEs as
source and IAB-nodes as destination. Backhaul links involving
t will always point towards it, as it is always the destination
to reach the core. The links between IAB-nodes instead can be
used in one or the other direction to build the IAB-tree, so the
measurements graph contains a couple of links per each neighbor
IAB-node pair. Figure 1a and Figure 1b report an example of a
measurements graph and a possible IAB-tree.

Local detailed information on the feasibility of wireless links
between UEs and IAB-nodes is available on each gNBs. The O-
RAN architecture allows extensions to standard interfaces so that
we can assume that the local information can be collected by
an rApp, running on the non-real-time RIC, which reconstructs
the measurements graph we mentioned above. Then, the opti-
mization algorithm periodically runs and pushes the optimized
topology to the RAN through the O1 interface. Note that we take
into consideration periodic updates of the topology with a period
in the order of minutes, so we assume that disabled nodes wake
up to receive an updated topology with a similar schedule. This
schedule is also perfectly compatible with the non-real-time RIC
closed-loop time constraints. Without loss of generality in the
following model we will assume the optimization of a single tree,
but the proposed optimization model can be trivially adapted to
optimize multiple trees.

(a) (b)
Fig. 1: Example of a measurements graph G (a) and a possible
IAB Tree T (b). IAB-donors are depicted in red, IAB-nodes in
blue, UEs in black, and deactivated IAB-nodes in light blue.

A. Optimization problem

Our optimization model aims to identify a tree, denoted as T ,
which is a subgraph of G, rooted in the IAB-donor, and whose
leaves are the UEs. The primary objective of T is to minimize
the energy consumption of the network. This consumption is
generally viewed as a combination of static energy, which is
expended even when an IAB-node remains idle, and dynamic
energy, which depends on the volume of radio resources the
IAB-node has to serve. As per the findings in [15], static energy
constitutes over 70% of the peak energy consumption by a gNB.
Given this significant skew towards static energy, our model
simplifies to focus predominantly on static energy. The resultant
objective is to construct the tree T such that the activation of
IAB-nodes is minimized.

Additionally, since the whole network operates using the
same spectrum, we assume that each node has a Time Division
Multiple Access (TDMA) scheduler that operates using a round-
robin policy to schedule the inbound traffic and a dedicated radio
device to relay the outbound traffic. This additional constraint—
which follows guidance from 3GPP technical documents [16]—
differentiates our model from a classical multicommodity flow
problem, where adjacent edges do not have to share the same
time resources as in a wireless network.

We begin the formulation of the problem as a binary multi-
commodity flow problem. In such a problem, we have to route a
set K of commodities on the graph, each using a single path. A
commodity k ∈ K is defined as a triplet sk, tk, dk where sk is the
source node (in our case, a UE), tk is the destination node (in our
case, the IAB-donor t) and dk ∈ R is the bandwidth to reserve
on the path from sk to tk. These commodities are decided by
the Mobile Network Operator (MNO) beforehand, depending on
the minimum capacity it wants to guarantee to its customers, and
might be differentiated by different classes. The MNO can feed
this information to the rApp running the optimization problem.
We denote by Nout(v) the outer neighbors of node v and by
Nin(v) its inner neighbors. The cardinality of these sets (e.g.,
the outer and inner degrees) are denoted by out(v) and in(v),
and their sum (the degree of the node) deg(v) = out(v)+ in(v).
Let us introduce the binary variables a(v) ∀v ∈ V which
indicate whether node v is turned on or sleeping, binary vari-
ables fk(u, v) which indicate whether commodity k uses edge
(u, v) ∈ E , and binary variables f(u, v) which indicate whether
(u, v) is used by any commodity. We define the problem as the
following binary non-linear programming problem:

min
∑
v∈V

a(v) (1)



s.t.
∑
k∈K

fk(u, v) · dk ≤ c(u, v)

× 1∑
w∈Nin(v)

f(w, v)
∀(u, v) ∈ E , ∀k ∈ K

(2)∑
v∈V

fk(u, v)−
∑
v∈V

fk(v, u) = 0 ∀u ∈ V ,∀k ∈ K (3)∑
v∈V

fk(sk, v)−
∑
v∈V

fk(v, sk) = 1 ∀k ∈ K (4)∑
v∈V

fk(v, tk)−
∑
v∈V

fk(tk, v) = −1 ∀k ∈ K (5)

a(v) ≥ 1

deg(v)

 ∑
∀u∈Nin(v)

f(u, v) +
∑

∀u∈Nout(v)

f(v, u)


∀(v) ∈ E

(6)
f(u, v) ≥ fk(u, v) ∀(u, v) ∈ E , k ∈ K (7)∑
v∈Nout(u)

f(u, v) ≤ 1 ∀u ∈ V (8)

a(v), f(u, v), fi(u, v) ∈ {0, 1} (9)

Our objective in Eq. (1) is to minimize the number of nodes
that are turned on, e.g., the energy consumption of the network.
In Eq. (6), the value of variable a(v) is enforced to be 1 if
any flow uses node v. Eq. (2) to (5) are multi-commodity flow
constraints, where Eq. (3) to (5) enforce the equilibrium of the
flow and Eq. (2) ensures the capacity constraints are respected.
This constraint is different from the classic multicommodity flow
problem, in which it would be

fk(u, v) · dk ≤ c(u, v) ∀(u, v) ∈ E ,∀k ∈ K.

In fact, as mentioned above, in a wireless network the edges
adjacent to the same node need to share the spectrum, typically
by using TDMA with a specific scheduler. In our case, we
have assumed that a Round Robin scheduler allocates equal
resources to all the adjacent edges. Finally, the constraint in
Eq. (7) ensures that an edge is activated if any commodity uses
it and Eq. (8) makes sure all activated nodes have outer degree 1,
which implies the network is a tree.

This model is non-linear because of the inverse function in
Equation Eq. (2). We now propose an equivalent linearized
version of the previous model. We prove the equivalence in
Theorem 1.

In the linearized model below, we introduce binary variables
xi(v) ∀v ∈ V . These variables are equal to 1 iff at least i of
the inner edges incident to v are activated. This enables us to
linearize the inverse function in Eq. (2) and to replace it with a
weighted sum of those binary variables.

min
∑
v∈V

in(v)∑
i=1

xi(v) (10)

s.t. f(u, v) · dk ≤ c(u, v) ·

x1(v)−
in(v)∑
i=2

xi(v)

(i− 1)i


∀(u, v) ∈ E

(11)

xi(v) ≥

 ∑
u∈Nin(v)

f(u, v)− (i− 1)

 /in(v)

∀v ∈ V , ∀1 ≤ i ≤ d(v)

(12)

xi(v) ∈ {0, 1} ∀v ∈ V ,∀1 ≤ i ≤ d(v) (13)
(3), (4), (5), (7), (8), (9)

Theorem 1. The BNLP (1) - (9) has the same optimal solution
as the BLP (3) - (13).

Proof. Let us first observe that

( ∑
u∈Nin(v)

f(u, v)− (i− 1)

)
is

always positive if at least i inner edges of v are activated, and is
nonpositive otherwise. also note that this sum is always lower or
equal to in(v). Hence, the right-hand side of Eq. (12) is between
-1 and 1, and its value is positive if i inner edges are used. This,
combined with the fact we are minimizing the sum of variables
xi(v) means that in an optimal solution to problem (3) − (13),
xi(v) will be equal to 1 if at least i inner edges of v are activated
and 0 otherwise.
Let us now observe that in Eq. (11), if n inner edges of v
are activated, then x1(v), x2(v), ...xn(v) will be equal to 1. It
follows that the sum x1(v) −

∑in(v)
i=2

xi(v)
(i−1)i will be equal to 1

n ,
e.g. the constraint is equivalent to constraint (2). Finally, observe
that since we are building a tree, minimizing its number of edges
is equivalent to minimizing its number of nodes, as a tree of n
nodes always has exactly n − 1 edges, meaning the objective
function, Eq. (10), is equivalent to the objective in Eq. (1).

III. PERFORMANCE EVALUATION SETUP

This section presents the techniques used to synthetically
generate the set of measurements graphs G(V , E), needed to
evaluate the feasibility and effectiveness of our optimization
model. In particular, we will be using datasets representing an
area of 0.092km2 in the center of Milan, Italy. To do so, in the
first subsection, we will describe the state-of-the-art techniques
used to place the IAB-nodes [17], and the UEs [18]. Then, in
the second subsection, we present our channel model, based on
3GPP specifications combined with ray tracing. Finally, the third
section presents our data-driven time-varying UE density model,
which enables us to generate different instances depending on
the time of the day and the day of the week.

A. Placement of gNBs and UEs

The set of nodes of our graph V is comprised of both IAB-
nodes, and UEs, whose placement is done separately using two
different techniques. IAB-nodes are placed on building facades
with a given density λgNB. The exact position is computed by
taking advantage of a state-of-the-art placement heuristic [17]
that exploits highly precise 3D models to place the gNB such
that the number of potential UEs’ location in line of sight is
maximized. UEs are then randomly distributed both in public
areas, such as streets, and inside buildings. Specifically, given a
density of λUE, indoor UEs are uniformly randomly distributed
inside buildings with a density equal to ri/o · λUE and outdoor
UEs are uniformly randomly distributed inside buildings with



Fig. 2: Sample deployment of a network in the center of Milan,
with 1 IAB-donor (in red), 7 IAB-nodes (in blue), and 83 UEs
(in black). It corresponds to λUE(9) = 900 UE/km2 (Mon 9am).

density (1 − ri/o) · λUE, where ri/o is a commonly used ratio
of indoor to outdoor UE equal to 0.8 taken from 3rd Generation
Partnership Project (3GPP) technical report [18]. In short, we
consider that in our simulations 80% of the UEs are placed
indoors. Figure 2 shows a deployment with λgNB = 45 and
λUE = 900 UE/km2.

B. Access and Backhaul channel models

Once the location of both UEs and IAB-nodes have been
determined, we evaluate the path loss by applying the 3GPP
Urban-Micro (UMi) stochastic channel model [19]. However,
instead of using the stochastic Line of Sight (LoS) probability
model provided by the same UMi model, we deterministically
evaluate the LoS by employing ray tracing analysis on the same
3D models used to find the optimal locations, obtaining a more
accurate estimation [20]. For indoor UEs, we always consider
them to be Non-LoS (NLoS) and we add the additional Outdoor
to Indoor (O2I) penetration loss. Since the buildings in the area
we consider are mostly made out of concrete, we use the high-
loss O2I model [19].

Finally, we compute the Signal-to-Noise-Ratio (SNR) using
the thermal noise and by adding the receiver noise figure, then
we calculate the Shannon capacity. Both access and backhaul are
assumed to be using the same frequencies, but different values
of antenna gain and numbers of MIMO layers are used. Tab. I
details all the values used in our simulations, which are aligned
with typical literature and 3GPP studies on this topic.

C. Time-varying UE density model

As explained in more detail in Sect. I, most studies dealing
with topology optimization focus their analysis on a single, or a
handful, value of λUE. Since the energy optimization technique
we devise tunes the IAB-node activation on the basis of the
number of UEs and their load, we need to evaluate our model
on a large number of values of UE density, ideally following a
realistic trend. Therefore, we employ a technique used in similar
research [21] to devise a time-varying UE density model. First,
we extract the cell load profile p(t) related to our analysis area,
in Milan, from openly available datasets [14]. We then normalize
it in the range (0, 1], and we model the UE density as a function
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Fig. 3: Weekly profile for the UE density in central Milan.
Parameter Value

Area size 0.092 km2

UE density range [0-900] UE/km2

Indoor/Outdoor UE ratio 80/20
Carrier frequency 28 GHz
Bandwidth 100 MHz
Noise Figure 5 dB
O2I Loss 14.15 dB
Reception gain (Access/Backhaul) 3 / 10 dBi
MIMO layers (Access/Backhaul) 2 / 4
Backhaul transmission power 30 dBm
Minimum Capacity per UE 80Mb/s
Number of independent simulation runs 10

TABLE I: Simulation Parameters

of time λUE(t) = p(t)lλgNB, where l = 10 is the number of UEs
per gNBs taken from the 3GPP technical report [18]. Finally, we
generate a set of 168 graphs spanning an average week with a
one-hour granularity.

Figure 3 reports the hourly trend of λUE(t) corresponding to
the area of our analysis, showing how for several hours every
night the network has to serve almost no UEs and how in the
weekends, even at peak hours, the density of UEs never exceed
80% of the weekday peak hours.

IV. RESULTS

As already mentioned in Sect. I, we evaluate our model on
a 0,092km2 area in the center of the city of Milan (Italy), for
which we computed the UE density trend λUE of an average
week. For each hour of the week (168 in total), we generate
the measurements graph as described in the previous section and
then we run our optimization algorithm on it. We compare the
trees found by our solution with 4 strategies:

• All donors, a dense deployment without IAB, where all the
gNB are wired. It is an upper bound in terms of energy
consumption and capacity. Additionally, no re-distribution
of the UEs is performed as they are always attached to the
gNB with the lowest SNR.

• No relays, a deployment where all the IAB-nodes are not
active. It is a lower bound in terms of energy and capacity.

• Widest Tree, a strategy that employs the well-known
widest path algorithm to find the path of maximum capacity
(e.g., with the largest bottleneck in terms of capacity) from
each UE towards the donor and deactivates all the IAB-
nodes that are not part of any path.
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Fig. 4: Number of IAB-nodes activated in the first 24 of the week
(Monday).

• Optimized Tree, our optimization model.
In the first part of this section, we compare the energy con-
sumption (both in terms of the number of nodes activated and
of the overall number of gNB-hours) of the different algorithms.
Then, in the second part, we evaluated the topologies in terms of
bottlenecks of the downlink capacity.

A. Energy Consumption

To evaluate the energy consumption of the IAB networks
we first show the hourly number of active IAB-nodes, then we
introduce a metric that measures the total number of hours each
IAB-node has been active. The IAB-donor is not taken into
consideration as we always need at least one node to be active
to provide a minimum service to the users.

Figure 4 shows the number of IAB-nodes activated, on the left
axis, and the number of UEs connected to the network, on the
right axis. To improve the readability only the values for the first
day of the week have been reported. Optimized Tree, shows that
it is possible to fully deactivate the IAB-nodes at nighttime (from
12 pm to 4 am) and that also during daytime several IAB-nodes
can be deactivated. By comparing its trend with the number of
UEs, we can also see that it gets perfectly followed, highlighting
the effectiveness of our optimization model. Widest Tree, on
the other hand, never manages to deactivate more than 3 IAB-
nodes, highlighting that a specific algorithm is needed to fully
implement energy-saving policies.

Additionally, by integrating the number of activated gNB at
each hour for the span of the week we obtain the total number
of gNB-hours for each strategy. For No relays, the value is
168h, as only one gNB is always active. For All donors, on
the other hand, the total number of gNB-hours is equals to
168h · 8 = 1344h, since 8 IAB-donors are active at all times.
More interestingly, the values for Widest Tree and Optimized
Tree respectively activate the RAN for 1141h and 709h, which
means our method improves the power consumption of 47% over
All Donors and 38% over Widest Tree.

B. Capacity

To evaluate the performance of the topology we analyze
the capacity served to each UEs with three different capacity

metrics, which are shown in Figure 5 and detailed below. First,
let us define some functions used throughout the section. Let
p(u, t) be the function returning the set of edges forming the
path from u to t over our topology tree. Let Nin(t) the number
of edges directed towards t in the tree and c(i, j) the capacity of
the edge (i, j).

The first metric, called Average Idle Capacity measures the
average theoretical capacity of UEs, e.g. the capacity that would
be attainable if the network resources were completely unused.
As detailed in Eq. (14) below, it is computed as the minimum
capacity (the bottleneck) of the edges over the path between
each UE (u) and the donor (t). Which is then averaged across
all the UEs u ∈ U . This metric represents an upper bound on the
capacity per UE.

ĉI =
1

|U |
∑
u∈U

min
(i,j)∈p(u,t)

c(i, j) (14)

Figure 5a shows the Average Idle Capacity for the four differ-
ent strategies on the first 24 hours of our week. The first insight
provided by this figure is that the maximum capacity per UE does
not depend on the load of the network. Moreover, as we were
expecting All donors and No relay are respectively the upper
and lower bounds in terms of capacity. Widest Tree, the strategy
that maximizes the bottleneck between each UE and the donor,
manages to achieve a capacity very close to the upper bound (8%
lower). Optimized Tree instead shows a more significant drop
with a loss of 35%. The drop can be explained by the minimum
capacity constraint that, instead of letting each UEs reach the
IAB-donor through the widest path, in certain cases picks paths
worse in terms of maximum capacity that instead guarantee the
minimum capacity.

The second metric, called Average Saturation Capacity and
detailed in Eq. (15), is formulated in a very similar way as
Eq. (14). However, here we assume that all the UEs try to access
the network at the same time, thus we divide the capacity of each
edge cs,t by the number of inner neighbors of the node t, since
those edges share the same resources through the scheduler.

ĉS =
1

|U |
∑
u∈U

min
(i,j)∈p(u,t)

c(i, j)

Nin(j)
(15)

As in the previous metric, also here All donors and No
relays behaves respectively as upper and lower bound. The
difference between the two other strategies, and their distance
from the upper bound drops sharply. In fact, at peak time All
donors is capable of delivering roughly 200Mb/s per UE, while
Optimized Tree and Widest Tree respectively deliver 115 and
130 Mb/s per UE.

The third metric, called Minimum Saturation Capacity and
detailed in Eq. (16), measures the capacity delivered to worst
UE while the network is under saturation by all the UEs, e.g. it
defines the minimum level of Quality-of-Service provided by the
topology. It is defined similarly to the previous one, but instead
of averaging over the UEs we take the worst value.

c̄S = min
u∈U

min
(i,j)∈p(u,t)

c(i, j)

Nin(j)
(16)
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Fig. 5: Capacity Metrics for the first 24h of the week (Mon).

Figure 5b shows that Optimized Tree is the only strategy that
manages to guarantee the minimum level of service, equal to
80Mb/s during peak hours (7 am-16 pm), while also minimizing
the excessive capacity at night time. In comparison, with No
relays we measure a minimum level of service that, at peak
time, is one order of magnitude lower than the minimum level
of service (between 2 and 7 Mb/s) while Widest Tree and
All donors behave similarly in terms of minimum capacity, as
they can both take advantage of all the IAB-nodes available.
However, since the UEs are not load-balanced across all the
available gNB, the minimum level of service is not met. We also
note that with All donors there is also an excess of capacity at
night time; when energy-saving policies could deactivate several
IAB-nodes, moreover despite being in a more favorable position
where no routing is to be performed beyond the first link between
the UEs and the BS, All donors still has less capacity than the
Optimized Tree. This emphasizes the importance of balancing
the load of UEs between base-stations

V. CONCLUSIONS

In this paper, we have modeled and solved the problem of
finding an IAB topology optimized for energy efficiency. We
find optimal solutions to the problem, which enables us to save
up to 47% of energy compared to the baseline, while still re-
specting capacity constraints, which other approaches cannot do.
Our results hence show the importance of considering energy-
efficiency as a core feature of IAB topology design. In the future,
we plan to improve the speed of our algorithm and to propose fast
heuristics inspired by it. We also plan on evaluating the energy
savings and capacity on a real testbed.
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