This paper has been accepted for publication on IEEE Transactions on Mobile Computing.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media mcludmﬁfcprinting/rcpublishing 1

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrig

ted component of this work in other works.

OrchestRAN: Orchestrating Network Intelligence
in the Open RAN

Salvatore D’Oro, Member, IEEE, Leonardo Bonati, Member, IEEE, Michele Polese, Member, IEEE, and
Tommaso Melodia, Fellow, IEEE

Abstract—The next generation of cellular networks will be character-
ized by softwarized, open, and disaggregated architectures exposing
analytics and control knobs to enable network intelligence via innovative
data-driven algorithms. How to practically realize this vision, however,
is largely an open problem. Specifically, for a given intent, it is still
unclear how to select which data-driven models should be deployed and
where, which parameters to control, and how to feed them appropriate
inputs. In this paper, we take a decisive step forward by presenting
OrchestRAN, a network intelligence orchestration framework for next
generation systems that embraces and builds upon the Open Radio
Access Network (RAN) paradigm to provide a practical solution to these
challenges. OrchestRAN has been designed to execute in the non-Real-
time (RT) RAN Intelligent Controller (RIC) as an rApp and allows Net-
work Operators (NOs) to specify high-level control/inference objectives
(i.e., adapt scheduling, and forecast capacity in near-RT, e.g., for a set
of base stations in Downtown New York). OrchestRAN automatically
computes the optimal set of data-driven algorithms and their execution
location (e.g., in the cloud, or at the edge) to achieve intents specified
by the NOs while meeting the desired timing requirements and avoiding
conflicts between different data-driven algorithms controlling the same
parameters set. We show that the intelligence orchestration problem
in Open RAN is NP-hard. To support real-world applications, we also
propose three complexity reduction techniques to obtain low-complexity
solutions that, when combined, can compute a solution in 0.1 s for large
network instances. We prototype OrchestRAN and test it at scale on
Colosseum, the world’s largest wireless network emulator with hardware
in the loop. Our experimental results on a network with 7 base stations
and 42 users demonstrate that OrchestRAN is able to instantiate data-
driven services on demand with minimal control overhead and latency.

Index Terms—O-RAN, Open RAN, Atrtificial Intelligence, Orchestration,
5G, 6G.

1 INTRODUCTION

The fifth-generation (5G) of cellular networks and its evo-
lution (NextG), will mark the end of the era of inflexible
hardware-based Radio Access Network (RAN) architectures
in favor of innovative and agile solutions built upon soft-
warization, openness and disaggregation principles. This
paradigm shift—often referred to as Open RAN-—comes

The authors are with the Institute for the Wireless Internet of Things, North-
eastern University, Boston, MA, USA. Email: {s.doro, l.bonati, m.polese,
melodia}@northeastern.edu.

This work was partially supported by the U.S. National Science Foundation
under Grants CNS-1923789 and NSF CNS-1925601, and the U.S. Office of
Naval Research under Grant N00014-20-1-2132.

Service Management and Orchestration (SMO)
I non-RT RIC : OrchestRAN (rApp) :|

Radio Access Network (RAN) |I| A1 o1
[near-RT RIC]

E1
CU (control) = =
E2 [F1-c
DU
i Open Fronthaul
[RU

CU (user)
|F1-u

® o d@.

Figure 1. O-RAN reference architecture and interfaces (left). Represen-
tation of an O-RAN network architecture as a tree graph (right).

with unprecedented flexibility. It makes it possible to split
network functionalities—traditionally embedded and exe-
cuted in monolithic base stations—and instantiate and con-
trol them across multiple nodes of the network [1].

1.1 The O-RAN Paradigm

In this context, the O-RAN Alliance [2], a consortium led by
Network Operators (NOs), vendors and academic partners,
is developing a standardized architecture for Open RAN
that promotes horizontal disaggregation and standardiza-
tion of RAN interfaces, thus enabling multivendor equip-
ment interoperability and algorithmic network control and
analytics [3]. As shown in Fig. 1, O-RAN embraces the 3rd
Generation Partnership Project (3GPP) functional split with
Central Units (CUs), Distributed Units (DUs) and Radio
Units (RUs) implementing different functions of the protocol
stack. O-RAN also introduces (i) a set of open standardized
interfaces to interact, control and collect data from every
node of the network; as well as (ii) RAN Intelligent Con-
trollers (RICs) that execute third-party applications over an
abstract overlay to control RAN functionalities, i.e., xApps in
the near-Real-time (RT) and rApps in the non-RT RIC.

The O-RAN architecture makes it possible to bring au-
tomation and intelligence to the network through Machine
Learning (ML) and Artificial Intelligence (AI), which will
leverage the enormous amount of data generated by the
RAN—and exposed through the O-RAN interfaces—to an-
alyze the current network conditions, forecast future traffic
profiles and demand, and implement closed-loop network
control strategies to optimize the RAN performance.

1.2 The Importance of Al in O-RAN

For this reason, how to design, train and deploy reliable
and effective data-driven solutions has recently received
increasing interest from academia and industry alike, with
applications ranging from controlling RAN resource and
transmission policies [4-15], to forecasting and classifying
traffic and Key Performance Indicators (KPIs) [16-20], as
well as regulating the placement of network components
and functions [21, 22], thus highlighting how these ap-
proaches will be foundational to the Open RAN paradigm.
However, how to deploy and manage, i.e., orchestrate, in-
telligence into softwarized cellular networks is a uniquely
challenging problem for the following reasons:

o Complying with time scales and making input available:
Adapting RAN parameters and functionalities requires con-
trol loops operating over time scales ranging from a few
milliseconds (i.e., real-time) to a few hundreds of millisec-
onds (i.e., near-RT) to several seconds (i.e., non-RT) [8, 23].
As a consequence, the models and the location where they
are executed need to be selected to be able to retrieve
the necessary inputs and compute the output within the
appropriate time constraints [8, 24]. For instance, while IQ
samples are easily available in real time at the RAN, it is
extremely hard to make them available at the near-RT and
non-RT RICs within the same temporal window, making the
execution of models that require IQ samples as input on the
RICs ineffective [25].

o Choosing the right model: Each ML/ Al model is designed
to accomplish specific inference and/or control tasks and
requires well-defined inputs in terms of data type and size.
One must make sure that the most suitable model is selected
for a specific NO request, and that it meets the required
performance metrics (e.g., minimum accuracy), delivers the
desired inference/control functionalities, and is instantiated
on nodes with enough resources to execute it.

o Conflict mitigation: One must also ensure that selected
ML /AI models do not conflict with each other, and that the
same parameter (or functionality) is controlled by only a
single model at any given time.

We also mention that, despite similar in certain aspects,
this problem cannot be trivially solved using existing ap-
proaches for Virtual Network Function (VNF), services [26]
and virtual machine placement [27]. Indeed, solutions for
cloud-native architectures primarily focuses on orchestrat-
ing functionalities that deliver services such as computer
vision, video transcoding, firewalls and content delivery
(to name a few) and very rarely deal with functions that
control other network elements (e.g., RAN components)
which comes with unique challenges such as: (i) ensuring
that each ML/AI model receives the proper input and
within the desired temporal windows so as to process data
that is not obsolete and ensure timely decision-making; (ii)
selecting the correct ML/AI model that meets NO intents
in terms of accuracy and KPIs; and (iii) avoid conflicts that
might result in inefficient decision-making and performance
degradation.

For these reasons, orchestrating network intelligence in
the Open RAN presents unprecedented and unique chal-
lenges that call for innovative, automated and scalable
solutions. In this paper, we address these challenges by

2

presenting OrchestRAN, an automated intelligence orches-
tration framework for the Open RAN. OrchestRAN follows
the O-RAN specifications and operates as an rApp executed
in the non-RT RIC (Fig. 1) providing automated routines
to: (i) Collect requests from NOs; (ii) select the optimal
ML/AI models to achieve NOs’ goals and avoid conflicts;
(iii) determine the optimal execution location for each model
complying with time scale requirements, resource and data
availability, and (iv) automatically embed models into O-
RAN applications that are dispatched to selected nodes,
where they are executed and fed the required inputs.

1.3 Main Contributions

To achieve this goal, we have designed and prototyped
novel algorithms embedding pre-processing variable re-
duction and branching techniques that allow OrchestRAN
to compute orchestration solutions with different com-
plexity and optimality trade-offs, while ensuring that the
NOs intents are satisfied. We evaluate the performance
of OrchestRAN in orchestrating intelligence in the RAN
through numerical simulations, and by prototyping Or-
chestRAN on ColO-RAN [28], an O-RAN-compliant large-
scale experimental platform developed on top of Colos-
seum, the world’s largest wireless network emulator with
hardware in-the-loop [29]. Experimental results on an O-
RAN-compliant softwarized network with 7 cellular base
stations and 42 users demonstrate that OrchestRAN enables
seamless instantiation of O-RAN applications with diverse
time scale requirements at different O-RAN components.
OrchestRAN automatically selects the optimal execution
locations for each O-RAN application, thus moving network
intelligence to the edge with up to 2.6x reduction of control
overhead over the O-RAN E2 interface. To the best of
our knowledge, this is the first large-scale demonstration
of an O-RAN-compliant network intelligence orchestration
system.

This manuscript extends the shorter conference paper
version [30] by providing (i) extensive details on the pro-
totype implementation of OrchestRAN, (ii) an in-depth dis-
cussion on the advantages of ML/AI model sharing, (iii)
details on the design and training of the ML/AI solutions
used in the prototype; and (iv) more numerical and experi-
mental results to assess the performance of our solution.

The remainder of this paper is organized as follows: Sec-
tion 2 surveys related work, while Section 3 introduces the
O-RAN architecture. OrchestRAN, its building blocks and
procedures are presented in Section 4. Section 5 formulates
the network intelligence orchestration problem and shows
its NP-hardness, while Section 6 presents low-complexity
and scalable algorithms to solve it. OrchestRAN perfor-
mance is assessed numerically in Section 7, while Sections 8
and 9 present the OrchestRAN prototype and its perfor-
mance evaluation, respectively. Finally, Section 10 concludes
the paper.

2 RELATED WORK

The application of ML/AI algorithms to cellular networks
is gaining momentum as a promising and effective way

to design and deploy solutions capable of predicting, con-
trolling, and automating the network behavior under dy-
namic conditions. Relevant examples include the applica-
tion of Deep Learning and Deep Reinforcement Learning
(DRL) to predict the network load [10, 16, 31], classify
traffic [17, 32, 33], perform beam alignment [18, 19], allocate
radio resources [4, 5, 15, 34], and deploy service-tailored
network slices [6-11, 35]. It is clear that ML/AI techniques
will play a key role in the transition to intelligent networks,
especially in the O-RAN ecosystem [36]. However, a rele-
vant challenge that still remains unsolved is how to bring
such intelligence to the network in an efficient, reliable and
automated way, which is ultimately the goal of this paper.

In [37], Ayala-Romero et al. present an online Bayesian
learning orchestration framework for intelligent virtualized
RANSs where resource allocation follow channel conditions
and network load. The same authors present a similar
framework in [12], where networking and computational
resources are orchestrated via DRL to comply with service
level agreements (SLAs) while accounting for the limited
amount of resources. Singh et al. present GreenRAN, an
energy-efficient orchestration framework for NextG that
splits and allocates RAN components according to the
current resource availability [38]. In [39], Chatterjee et al.
present a radio resource orchestration framework for 5G ap-
plications where network slices are dynamically re-assigned
to avoid inefficiencies and SLA violations. Puligheddu et al.
design a semantic framework compliant with the O-RAN
specifications to allocate computational resources at the
edge based on the complexity of the tasks to perform, with
a focus on image recognition [40]. Relevant to our work are
the works of Morais et al. [22] and Matoussi et al. [41], which
present frameworks to optimally disaggregate, place and
orchestrate RAN components in the network to minimize
computation and energy consumption while accounting for
diverse latency and performance requirements. Although
the above works all present orchestration frameworks for
NextG systems, they are focused on orchestrating RAN
resources and functionalities, rather than network intelli-
gence, which represents a substantially different problem.

In the context of orchestrating ML /AI models in NextG
systems, Baranda et al. [42, 43] present an architecture
for the automated deployment of models in the 5Growth
management and orchestration (MANO) platform [44], and
demonstrate automated instantiation of models on demand.
The closest to our work is the work of Salem et al. [24],
which proposes an orchestrator to select and instantiate
inference models at different locations of the network to
obtain a desirable balance between accuracy and latency.
However, [24] is not concerned with O-RAN systems, but
focuses on data-driven solutions for inference in cloud-
based applications.

Besides the differences highlighted in the previous dis-
cussion, OrchestRAN differs from the above works in that
it focuses on the Open RAN architecture and is designed to
instantiate both inference and control solutions complying
with O-RAN specifications. Moreover, OrchestRAN allows
model sharing across multiple requests to efficiently reuse
available network resources. We prototyped and bench-
marked OrchestRAN on Colosseum. To the best of our
knowledge, this is the first large-scale demonstration of

3

a network intelligence orchestration system tailored to O-
RAN architecture and networks.

3 O-RAN: A PRIMER

O-RAN embraces the 7-2x functional split (an extension
of the 3GPP 7-2 split), where network functionalities are
divided across multiple nodes, namely, CUs, DUs and RUs
(Fig. 1, left). The RUs implement lower physical layer func-
tionalities. The DUs interact with the RUs via the Open
Fronthaul interface [45] and implement functionalities per-
taining to both the higher physical layer and the MAC
layer. Finally, the remaining functionalities of the protocol
stack are implemented and executed in the CU. The latter is
connected to the DUs through the F1 interface and is further
split in two entities—handling control and user planes—
connected via the E1 interface. These network elements run
on “white-box” hardware components connected through
O-RAN open interfaces, thus enabling multivendor interop-
erability and overcoming the vendor lock-in [1].

Beyond disaggregation, the main innovation introduced
by O-RAN lies in the non-RT and near-RT RICs. These
components enable dynamic and softwarized control of the
RAN, as well as the collection of statistics via a publish-
subscribe model [46] through open and standardized inter-
faces, e.g., the O1 and E2 interfaces (Fig. 1, left). Specifically,
the near-RT RIC hosts applications (xApps) that implement
time-sensitive—i.e., between 10 ms and 1 s—operations to
perform closed-loop control over the RAN elements. Prac-
tical examples include control of load balancing, handover
procedures, scheduling and RAN slicing policies [8, 47-49].
The non-RT RIC, instead, is designed to execute within a
service management and orchestration (SMO) framework,
e.g., Open Network Automation Platform (ONAP), and acts
at time scales above 1 s. It takes care of training ML/AI
models, as well as deploying models and network control
policies on the near-RT RIC through the Al interface. Similar
to its near-RT counterpart, the non-RT RIC supports the
execution of third-party applications, called rApps. These
components act in concert to gather data and performance
metrics from the RAN, and to optimize and reprogram its
behavior in real time through software algorithms to reach
NO'’s goals.

Since O-RAN embraces virtualization and cloud-native
principles, all of the above components can be instantiated
and executed both at the cell site or in the cloud, except
for RUs which must be deployed on the cell site as they
host the antennas necessary to establish wireless links. In
this paper, we consider the O-RAN deployment scenario
B [1], but OrchestRAN also applies to any other deployment
scenarios.

O-RAN specifications also envision ML/AI models in-
stantiated directly on the CUs and DUs, implementing RT—
Transmission Time Interval (TTI) level—control loops that
operate on 10 ms time-scales [50]. As of today, these real-
time control loops have not been yet specified by the O-
RAN Alliance, but dApps [25] represent a preliminary effort
to extend O-RAN specifications and their ML/AI capabil-
ities to CUs/DUs in order to support applications for 6G
and beyond. To ensure the highest level of flexibility and
extendibility, OrchestRAN has been natively designed to

NN NN EEEE S S SN NN SN ESE NN EEEEEEEEEEE,
n

(I OrchestRAN

Col?ector

Request

Request

+Functionalities:
+Locations:
+Time-scale

+Functionalities:

- Network slicing
+Locations:

- Area X

& (m

. . . .
+Time-scale |le BT Orchestration Engine

- non-real-time) ML/AI Catalog ‘|

1 f Optimization core
Request 1 - (ML/AI models,

+Functionalities: ' Vi location)

- Scheduling] H

- Beamforming L Model A Model Z 1

+Locations:
- AreaY

’ g Container creation
(xApp, rApp, dApp)

Infrastructure

+Time-scale 3)
- real-time abstraction Instantiation &
Orchestration module

./ "

Ao LTS) : :

'ﬁ 3 A : non-real- e
"snmmmsnjunmnnnnnnt _time T T OO

Service
Operator

RAN Intelligent
Controllers (RICs)

Sliciny
(non/near-real-time) J

policy

2 = -

Open RAN
(CUs,DUs,RUs)

Scheduling Beam
policy tracking

Figure 2. System design of OrchestRAN and main procedures.

)
I
1
1
1
1
1
1
1
’

support control loops implementing RT applications, such
as dApps [25].

4 ORCHESTRAN

As illustrated in Fig. 1, OrchestRAN is designed to be
executed as an rApp at the non-RT RIC. Its architecture
is illustrated in Fig. 2. It consists of: (i) The Infrastructure
Abstraction module, abstracting relevant information on the
underlying physical infrastructure (e.g., available resources,
deployment location of RICs and RAN components); (ii) the
ML/AI Catalog, storing data-driven solutions that can be
instantiated in the network, (iii) the Request Collector, col-
lecting the requests from the NOs, and (iv) the Orchestration
Engine, orchestrating and instantiating O-RAN applications
to satisfy the NOs requests.

At a high-level, first NOs specify their intent by sub-
mitting a request to OrchestRAN (step I). This includes the
set of functionalities they want to deploy (e.g., network
slicing, beamforming, scheduling control, etc.), the location
where functionalities are to be executed (e.g., RIC, CU, DU)
and the desired time constraint (e.g., delay-tolerant, low-
latency). Then, requests are gathered by the Request Collector
(step II, Section 4.3) and fed to the Orchestration Engine
(step III, Section 4.4) which: (i) Accesses the ML/AI Cata-
log (Section 4.2) and the Infrastructure Abstraction module
(Section 4.1) to determine the optimal orchestration policy
and models to be instantiated; (ii) automatically creates
containers with the embedded ML/AI models in the form of
O-RAN applications, and (iii) dispatches such applications
at the locations determined by the Orchestration Engine.

Since NOs goals and intents are likely to vary over time,
the above procedures are executed periodically on a time-
slotted basis.

For the sake of clarity, in Table 1 we have summarized
the notation used in the next sections.

4.1 The Infrastructure Abstraction Module

This module provides a high-level representation of the
physical RAN architecture. Following the O-RAN specifi-
cations, this is divided into five separate logical groups as
shown in Fig. 1 (right): non-RT RICs, near-RT RICs, CUs,
DUs and RUs.

Each group contains a different number of nodes de-
ployed at different locations of the network. Let D be the
set of such nodes, and D = |D| be their number.

As discussed before, the 7-2x functional split leverages
a hierarchical architecture where, for example, the near-
RT RIC controls multiple CUs/DUs, and the non-RT RIC
oversees multiple near-RT RICs. These hierarchical relation-
ships can be represented via an undirected graph with a tree
structure, such as the one in Fig. 1 (right). Specifically, leaves
represent nodes at the edge (e.g., RUs/DUs/CUs), while the
non-RT RIC is the root of the tree. It is also worth notic-
ing that CUs/DUs/RUs might be coexisting on the same
node. To capture this property, coexisting CUs/DUs/RUs
are modeled as a single logical node with a hierarchy level
equal to that of the hierarchically highest node in the group
(e.g., co-located DU and RU can be represented as a leaf
with the hierarchy level of a DU).

For any two nodes d',d” € D, we define variable
ca qv € {0,1} such that cgr gv = 1 if node d’ is reachable
from node d”, cq 4v = 0 otherwise. It is worth mention-
ing that “reachability” is not tied to “graph connectivity”.
Specifically, while two nodes d’ and d’ might be connected
in the general sense of graphs (as shown in Fig. 1 (right)
where leaves from a branch are connected to leaves of
another branch), they might not be physically reachable in
the networking sense. For example, while all RUs belong
to the same infrastructure graph tree (i.e., they belong to
a connected graph), they are likely unreachable from one
another due to either the lack of physical connectivity links,
limited network visibility, existence of firewalls, or due to
the high latency required to transfer data from one node to
another.

Furthermore, for each node d, let pfl be the total amount
of resources of type { € = dedicated to hosting and
executing ML/AI models and their functionalities, where
= represents the set of all resource types. Although we
do not make any assumptions on the specific types of
resources, practical examples may include the number of
CPUs, GPUs, as well as available disk storage and memory.
In the following, we assume that each non-RT RIC identifies
an independent networking domain and the set of nodes D
includes near-RT RICs, CUs, DUs and RUs controlled by the
corresponding non-RT RIC only.

4.2 The ML/AI Catalog

In OrchestRAN, the available pre-trained data-driven so-
lutions are stored in a ML/AI Catalog consisting of a set
M of ML/AI models. Although our framework is general
and supports both offline and online data-driven solutions,
it is worth mentioning that O-RAN specifications dictate
that all models contained in the ML/AI Catalog must have
been already pre-trained offline in the non-RT RIC [50],
and have successfully passed validation tests to ensure their
effectiveness and reliability once deployed on the field.

Table 1
Summary of Notation

Variable Description
D, D = |D| Set of nodes in the network and their number
F,F = |F]| Set of control and inference functionalities and their num-
ber
M, M = | M| | Set of ML/AI models in the catalog and their number
Fm CF Set of functionalities offered by model m € M
Z,1I=|Z| Set of outstanding requests and their number
T Set of ML/ Al model input types
Ca,a/ Binary variable to indicate if node d can reach node d’
E Set of resource types
p§ Amount of resources of type £ € E available at node d
g, Amount of resources of type £ € = required by model m
Om,f Binary variable to indicate if model m offers functionality
!
ti,lj eT Input type required by model m
Bm,f,d Suitability indicator for model m to deliver f at node d
Y, f Performance score for model m to deliver f
Cm,d Maximum number of instances of model m on node d
Fi,d Set of functionalities demanded by request ¢ on node d
Fi Set of functionalities demanded by request ¢ € Z on all
nodes
v; Monetary value of request ¢
Ti f,d Binary variable to indicate if f € F; 4
D; Set of nodes where functionalities in F; should be offered
i, f.d Minimum performance requirement to execute function-
ality f on node d and satisfy request %
™ Set of all performance requirements for request 7
04, f,d Maximum tolerable latency to execute functionality f on
node d and satisfy request ¢
DEI\} d Set of nodes providing input to function f to be executed
on node d as requested by
DN Set of input requirements for request ¢
miy’]’f kd o Binary optimization variable to indicate if function f
" requested by 4 on node d is execute via instance k of
model m on node d’
Yi Binary optimization variable to indicate if request i is
being satisfied
Zm,k,d Binary optimization variable to indicate if instance k of
model m is being actively used on node d
x Orchestration policy
A fd Data collection time
84IN The input size of model m measured in bytes
by, ar ljf)ttleneck data rate over the link between nodes d and
Ty, qr Propagation delay between nodes d and d’
Toree Inference time for model m
A fﬂ ;(Eo Execution time

Let F be the set of all possible control and inference func-
tionalities (e.g., scheduling, beamforming, capacity forecast-
ing, handover prediction) offered by such ML/AI models—
hereafter referred to simply as “models”. This set includes
all the functionalities currently offered by all dApps, xApps
and rApps in the ML/AI catalog. New functionalities are
added to F whenever a new application is published in the
catalog.

Let M = |M| and F = |F|. For each model m € M,
Fm C F represents the subset of functionalities offered by
m. Accordingly, we define a binary variable o,, € {0,1}

5

such that o, y = 1if f € F,,, 0,5 = 0 otherwise. Clearly,
we do not exclude the case where two (or more) models m/
and m/” provide the same set of functionalities, i.e., ., =
Fmr, but differ in terms of model size, architecture as well
as required inputs.

To capture those characteristics, we use p$, to indicate
the amount of resources of type £ required to instantiate and
execute model m. Moreover, we introduce 7 as the set of
possible input types. For each model m, tIN € T represents
the type of input required by the model (e.g., IQ samples,
throughput and buffer size measurements). The procedures
regulating data gathering, the format and the periodicity at
which data is collected from RAN nodes are specified by
O-RAN specifications and an overview can be found in [3].

Naturally, not all models can be equally executed ev-
erywhere. For example, a model m performing beam align-
ment [18], in which received IQ samples are fed to a neural
network to determine the beam direction, can only execute
on nodes where IQ samples are available. While IQ samples
can be accessed in real-time at the RU, it is hard to make
them available at CUs and the RICs without incurring in
high overhead and transmission latency with cases where
a 100 Gbps link dedicated to streaming IQ samples only is
needed to maintain a latency below 100 ms [25].

For this reason, we introduce a suitability indicator
B, 1,d € [0, 1] which specifies how well a model m is suited
to provide a specific functionality f when instantiated on
node d. Values of 3, s 4 closer to 1 mean that the model is
well-suited to execute at a specific location, while values
closer to 0 indicate that the model performs poorly, for
example, due to the lack of input data at node d, or due to
high computation latency that violates timing requirements
(e.g., real-time) of that functionality. We also introduce
a performance score 7, s measuring the performance of
the model with respect to f. Typical performance metrics
include classification/forecasting accuracy, mean squared
error and probability of false alarm.

A model can be instantiated on the same node multiple
times to serve different NOs or traffic classes. However, due
to limited resources, each node d supports at most Cy, 4 =
mingez{ Lpfl /05, |} instances of model m, where || is the
floor operator.

It is worth mentioning that AI/ML models, and the O-
RAN applications that embed them, are published in the
catalog only after they have been deemed reliable and safe
to be deployed on a production network. This validation is
a critical component of the AI/ML lifecycle management in
O-RAN and a detailed overview of this process is described
in [3].

4.3 Request Collector

OrchestRAN allows NOs to submit requests specifying
which functionalities they require, where they should exe-
cute, and the desired performance and timing requirements.
Without loss of generality, we assume that each request is
feasible, as any unfeasible request would be naturally be
excluded from the optimization process executed within the
Orchestration Engine. The Request Collector of OrchestRAN
is in charge of collecting such requests. A request i is defined
as a tuple (F;,m;, 8;,DIN), with each element defined as
follows:

e Functions and locations. For each request i, we define the
set of functionalities that must be instantiated on the nodes
as F; = (Fi,a)aep, with F; ¢ C F. Required functionalities
and nodes are specified by a binary indicator 7; ;4 € {0,1}
such that 7; s 4 = 1 if request i requires functionality f on
node d, ie., f € Fiq, Ti,f.a = 0 otherwise. We also define
D;={d €D :3 ;cF Ti,f,a > 1} as the subset of nodes of
the network where functionalities in F; should be offered;
o Performance requirements. For any request i, m; =
(7i,f,d)deD;,feF; , indicates the minimum performance re-
quirements that must be satisfied to accommodate i. For
example, if f is a beam detection functionality, 7; 5 4 can
represent the minimum detection accuracy of the model.
Similarly, in the case of capacity forecasting, a request can
specify a maximum tolerable Mean Square Error (MSE) level
5, f,d- We do not make any assumptions on the physical
meaning of m; ¢ 4 as it reasonably differs from one function-
ality to the other. For example, if 7 ¢ = 1 and 0, ¢ = 1
for a model m, such model can be instantiated on node
d to deliver functionality f requested by i if and only if
Brm,f.d = Ti,fd-
o Timing requirements. In principle, all functionalities could
be executed at the non-RT RIC by leveraging its centrality
in the network and its ability to gather data over the O-
RAN O1 interface. However, some functionalities might
have strict latency requirements that make their execution
at nodes far away from the location where the input is gen-
erated impractical or inefficient. For this reason, d; ¢4 > 0
represents the maximum latency request i can tolerate in
executing f on d; For example, although instantiating a
ML/ Al model to execute beam prediction at the non-RT RIC
might be possible, it does not guarantee real-time response
times as IQ samples and other data necessary to control the
transmission (or reception) beams must travel from the RUs
throughout the entire network and reach the non-RT RIC,
which inevitably incurs in high latency and violation of real-
time requirements.
o Data source. For each request 4, the NO also specifies the
subset of nodes whose generated (or collected) data must
be used to deliver functionality f on node d. This set is
defined as DN = (D} ;)aep;.reF, ., where DY} ; C D.
This information is paramount to ensure that each model is
fed with the proper data generated by the intended sources
only. For any tuple (i, f,d) we assume that ¢q ¢ = 1 for
all d’ € Dg\}d, i.e., data collection from D?\} 4 to node d is
always feasible.

In the remaining of this paper, we use Z to represent the
set of outstanding requests with I = |Z| being their number.

4.4 The Orchestration Engine

As depicted in Fig. 3, once requests are submitted to Orches-
tRAN, the next step consists in determining which requests
can be accommodated and orchestrating the corresponding
ML/ AI models. This task is accomplished by the Orchestra-
tion Engine, which selects the most suitable models from
the ML/AI Catalog and the location where they should
execute (step I). Then, OrchestRAN embeds the models into
containers (e.g., Docker containers of dApps, xApps, rApps)
(step II) and dispatches them to the selected nodes (step III).
Here, they are fed data from the RAN and execute their

Orchestration Policy

+ML/AI Models
+Location
+Input data

non-RT
RIC
(i
near-RT

o

"
OrchestRAN .
.

Orchestration Engine
Optimization core

(ML/Al models,
location)

near real-time xApp
Template

CU Ezasm T\ Y

l(u) ~ ‘

Container creation E (v)

(xApp, rApp, dApp) : near real-time xApp bu bU
. o

Instantiation & r &
Orchestration module =

= ing Beam
r policy tracking

Figure 3. An example of creation and dispatchment of an xApp on the
near-RT RIC via OrchestRAN.

Area X AreaY

functionalities (step IV). The selection of the models and of
their optimal execution location is performed by solving the
orchestration problem discussed in detail in Sections 5 and 6.
This results in an orchestration policy, which is converted
into a set of O-RAN applications that are dispatched and
executed at the designated network nodes, as discussed
next.

4.4.1 Container creation

To embed models in different O-RAN applications, con-
tainers integrate two subsystems, which are automatically
compiled from descriptive files upon instantiation. The first
is the model itself, and the second is an application-specific
connector. This is a library that interfaces with the node
where the application is running (i.e., with the DU in the
case of dApps, near-RT RIC for xApps, and non-RT RIC for
rApps), collects data from DN and sends control commands
to nodes in D;.

4.4.2 Dispatchment and Instantiation

Once the containers are generated, OrchestRAN dispatches
them to the proper endpoints specified in the orchestration
policy, where are instantiated and interfaced with the RAN
to receive input data. For example, xApps automatically
send an E2 subscription request to nodes in DY, and use
custom Service Models (SMs) to interact with them over the
E2 interface [46] (see Fig. 3).

The implementation details of these aspects will be cov-
ered in detail in Section 8.

4.5 Additional OrchestRAN features
4.5.1 Functionality outsourcing

Any functionality that was originally intended to execute
at node d’ can be outsourced to any other node d” as long
as c¢q g = 1. Accordingly, any node d” that is connected
to d, i.e, ¢ gr = 1, represents a possible candidate to
outsource any ML/AI model that was intended to execute
at d’. As we will discuss next, however, not all models can
be outsourced to neighbor nodes. Indeed, the node hosting
the outsourced model must have access to the required
input data, have enough resources to instantiate and execute
the outsourced model, and must satisfy performance and
timing requirements of the original request.

Input A

) !
[m)(ma) (]]

Input B

Input A Input B

Without function outsourcing and model sharing : With function outsourcing and model sharing

Figure 4. Example of function outsourcing and model sharing in Open
RAN.

4.5.2 Model sharing

The limited amount of resources, especially at DUs and RUs,
calls for efficient resource allocation strategies. If multiple
requests involve the same functionalities on the same group
of nodes, an efficient approach consists in deploying a single
model that can be shared across all requests.

For the sake of clarity, in Fig. 4 (left) we show an example
where a request can be satisfied by instantiating models m,
and ms, on d’, and a second one that can be accommodated
by instantiating models m; and mgs on d”. Clearly, this
deployment requires the instantiation of four models and,
despite it satisfies the two requests, it is not the most efficient
solution. Indeed, Fig. 4 (right) shows an alternative solution
where m; (common to both requests) is outsourced to d"”’ and
it is shared between the two requests, with a total of three
deployed models, against the four required in Fig. 4 (left).
Moreover, the energy and resource consumption of the two
approaches is quite different: The approach on the right of
Fig. 4 leverages a single instance of my, consuming p5, for
each resource of type £. The one on the left employs 2 x pf, |
to instantiate and execute two instances of m1, which results
in a higher resource utilization footprint.

In Section 5.5, we also discuss those cases where model
sharing and/or function outsourcing are nonviable.

5 THE ORCHESTRATION PROBLEM

Clearly, enabling network intelligence is not trivial and
depends on many factors such as resources and input
availability, latency requirements, but—most importantly—
it requires orchestration capabilities to split data-driven
functionalities across several points of the network. All of
these aspects will be discussed in detail in the following.
“fd e 10,1} be a binary variable such that

Let z,"0

ab, dd, = 1 if functionality f demanded by request ¢ on
node d is provided by instance k of model m instantiated
on node d'. In the following, we refer to the variable
x = (x:nf }gd,)i, f.d,m.k,a as the orchestration policy, where

i€Z, feF,(d,d)eDxD,meM,k=1...Cpa.

5.1 Conflict avoidance

For any tuple (i, f,d) such that 7; g = 1, we assume that
OrchestRAN can instantiate at most one model to avoid
multiple models controlling the same parameters and/or
functionalities. As mentioned earlier, this can be achieved
by either instantiating the model at d, or by outsourcing

7

it to another node d’ # d such that ¢4+ = 1. The above
requirement can be formalized as follows:

md/

Z Om, f Z Z €d dlx;%’,c}cd,d’ = YiTi,f.d 1)

meM d'e€D k=1

where y; € {0,1} indicates whether or not 7 is satisfied.
Specifically, (1) ensures that: (i) For any tuple (i, f,d) such
that 7; r4 = 1, function f is provided by one model only,
and (ii) y; = 1 (ie., request ¢ is satisfied) if and only if
OrchestRAN deploys models providing all functionalities
specified in F;.

5.2 Complying with the requirements

An important aspect of the orchestration problem is guaran-
teeing that the orchestration policy x satisfies the minimum
performance requirements 7; of each request 7, and that
both data collection and execution procedures do not exceed
the maximum latency constraint ¢; f 4. For example, one
might specify that a specific functionality is delivered with
a prediction accuracy that is above a desired threshold.
Similarly, a request might also specify the time scale at
which a specific functionality should be executed (e.g., non-
RT and in the order of a few seconds, or near-RT with a
time scale of a few milliseconds). These requirements are
captured by the following constraints.

5.2.1 Quality of models

For each tuple (i, f, d) such that 7; ;4 = 1, NOs can specify
a minimum performance level 7; ¢ 4. This can be enforced
via the following constraint

CnL,d'

1.
Xitd Y D Y cawlilyAma > X ayimiga (2)
meMd €D k=1

where Ay, rda = Bm.f.d Ym,f Om,f, and the performance
score Yo, s is defined in Section 4.2. In (2), x;,7,¢ = 1 if the
goal is to guarantee a value of 7, ¢ higher than a minimum
performance level m; r 4, and x; rq = —1 if the goal is to
keep vm, s below a maximum value 7; ¢ 4.

5.2.2 Control-loop time-scales

Another important requirement of the orchestration prob-
lem is the time scale at which each functionality must
execute. Considering latency is essential, as all functional-
ities and models must run within the required temporal
window. To satisfy the second constraint, we must ensure
that each O-RAN application can collect data to be fed to
each model and compute an output within the required
temporal window.

Each model m requires a specific type of input ¢\ and,
for each tuple (i, f, d), we must ensure that the time needed
to collect such input from nodes in DH\} 4 does not exceed
0, f,4- For each orchestration policy x, the data collection time
can be formalized as follows:

7nd’
i, f,d i, f,d
Diga(®) =Y omgy > wilile D coa Oyl 4 B
meM d’'eDk=1 d”eD%Nfd

where
S¢IN

i f.d
@:njjd’,d” - <

sun is the maximum input size of model m measured in
bytes, by 4 is the data rate of the link between nodes d”
and d’, and T, 4+ represents the propagation delay between
nodes d’ and d”. Note that since the link between nodes
d’ and d” might involve several hops, by 4~ represents the
bottleneck data rate over the entire routing path, which
makes it possible to capture the actual data rate at which
data will be sent from d” to d’ It is worth mentioning that
the propagation delay and the data rate depend on network-
wide routing policies, which might change over time as
more nodes are deployed and routing policies are changed
according to load balancing policies. These parameters,
which might change over time, are updated periodically
(e.g., via gperf and iperf). Moreover, although ML/AI
models might ingest a variable input size, in this analysis we
consider the worst case data collection time by considering
the maximum size of the input which is a hard constraint
especially to ensure that the RICs can perform inference
within their maximum tolerable time scale.

Let T57°° be the time to execute model m on node d'.
For any tuple (4, f, d), the execution time under orchestration
policy x is

bd/ d,,|’DH\} d| + Td',d’/) 5 (4)

m. d’

,d
APXEC(x) = 3 oy Y TS Z el 6
meM d'eD

By combining (3) and (5), any orchestration policy x
must satisfy the following constraint for all (¢, f, d) tuples:

A ga(x) + AFFFC(x) < bigaiga (6)

5.3 Avoiding resource over-provisioning

We must guarantee that the resources consumed by the O-
RAN applications do not exceed the resources pg of type &
available at each node (i.e., pg). For each node d and resource
type &, we have

Cid

Z szzmkd</)d (7)

meM k=1

where z,, 1.4 € {0, 1} indicates whether instance k of model
m is associated to at least one model on node d. Specifically,

let
g = 9 9 O i, ®)

i€T fEF; d'€D

be the number of tuples (4, f,d’) assigned to instance k
of model m on node d (7,54 > 1 implies that m is
shared). Notice that (7) and (8) are coupled one to another
as Zm,k,d = 1 if and only if n,, ;¢ > 0. This conditional
relationship can be formulated by using the following big-
M formulation [51]

Nme,d > 1 — M(1 = 2y 1,d))

N ked < M2 d (10)

where M is a real-valued number whose value is larger than
the maximum value of ny, i 4, i.e., M > IFD [51].

5.4 Problem formulation

For any request ¢, let v; > 0 represent its value. The goal
of OrchestRAN is to compute an orchestration policy x
maximizing the total value of requests being accommodated
by selecting (i) which requests can be accommodated; (ii)
which models should be instantiated; and (iii) where they
should be executed to satisfy request performance and time
scale requirements. This can be formulated as

max Zyivi (11)
oyr i€Z
subject to Constraints (1), (2), (6), (7), (9), (10)
znfkddf € {0,1} (12)
y; € {0,1} (13)
Zm,k,d € {07 1} (14)

where x is the orchestration policy, y = (y;)icz and z =
(Zm,k,d)meM k=1,....Crn.q,dED-

The objective of this problem is to satisfy as many
requests as possible and maximize the associated value by
enforcing operator intents while reducing overhead and
resource utilization on the network via model sharing. A
particularly relevant case is that where v; = 1 for any
request i, i.e., the goal of OrchestRAN is to maximize the
number of satisfied requests.

5.5 Disabling model sharing

Model sharing allows a more efficient use of the available
resources. However, it is also worth mentioning that, in
some cases, model sharing and function outsourcing can
be neither feasible nor possible. Indeed, although several
requests from the same NO can share the same model, it is
also true that different NOs might not be willing to share
the same models out of business and privacy concerns.
Similarly, although two nodes are connected one with an-
other, exchanging information incur in additional latency
depending on the available bandwidth on the link between
the two nodes as well as the propagation delay. Such latency
might exceed maximum latency requirements for real-time
applications (in the order of a few milliseconds), thus mak-
ing outsourcing inefficient and unpractical.

In this case, model sharing can be disabled in Orches-
tRAN by guaranteeing that a model is assigned to one
request only. This is achieved by adding the following

constraint for any model m, node d’ and k =1, .., Cy, v
Y2 wilila < (15)

i€Z deD feF;,a

5.6 NP-hardness of the Orchestration Problem

Although the utility function and constraints are linear,
solving the orchestration problem is not trivial as the op-
timization variables are binary. Indeed, Problem (11) is a
Binary Integer Linear Programming (BILP) problem which
can be shown to be NP-hard. The proof consists in building
a polynomial-time reduction of the 3-SAT problem (which
is NP-complete) to an instance of Problem (11) [52].

6 SOLVING THE ORCHESTRATION PROBLEM

BILP problems such as Problem (11) can be optimally
solved via Branch-and-Bound (B&B) techniques [53], readily
available within well-established numerical solvers, e.g.,
CPLEX, MATLAB, Gurobi. However, due to the extremely
large number Nopt of optimization variables, these solvers
might still fail to compute an optimal solution in a rea-
sonable amount of time, especially in large-scale deploy-
ments. Indeed, Nopr = |x|+ |y| +|z| = |x|, where |x| =
O(IFD?>MChrax), |yl = O), 2| = O(MDCyay), and
Crnax = maxmem,dep{Cm.q}- For example, a deployment
with D = 20, M = 13,1 = 10, F = 7 and Cypax = 3
involves ~210° optimization variables.

6.1

To mitigate the “curse of dimensionality” of the orches-
tration problem, we have developed two pre-processing
algorithms to reduce the complexity of Problem (11) while
guaranteeing the optimality of the computed solutions.
We leverage a technique called variable reduction [54]. This
exploits the fact that, due to constraints and structural
properties of the problem, there might exist a subset of
inactive variables whose value is always zero. For example,
if a request ¢ requires function f at node d, we cannot
satisfy this request by selecting a model m which does
not offer f, ie., op,r = 0. Indeed, selecting a model that
is not well-suited to satisfy a function requirement for a
given request automatically results in an unfeasible solution,
which should be avoided and removed.

These variables do not participate in the optimization
process, yet they increase its complexity. To identify those
variables, we have designed the following two techniques.

Combating Dimensionality via Variable Reduction

o Function-aware Pruning (FP). It identifies the set of inac-
tive variables

XEP = {xi;zf,}cd,d’ T fd =0V o, = 0O,Viel feF,
(d,d)eDxD,meM,k=1,...,C.a}, (16)
which contains all the x:nj ;;i 4 Variables such that either
(i) 7,7, = 0, i.e., request i does not require function f
at node d, or (ii) oy, = 0, i.e.,, model m does not offer
function f;

o Architecture-aware Pruning (AP). This procedure identi-
fies all the variables whose activation results in instan-
tiating a model on a node that cannot receive input data
from nodes in DP\} 4+ Indeed, for a given tuple (i, f, d)
such that 7; r ¢ = 1, we cannot instantiate any model on
anode d’ such that ¢y ¢ = 0, i.e., the two nodes are not
connected. The set of these inactive variables is defined
as

xA7 = {aylily seaw =0 Vi€ T f € F(dd)

€EDxDmeMk=1,....,Cpa} (17)

Once we have identified all inactive variables, Problem
(11) is cast into a lower-dimensional space where the new set
of optimization variables is equal to x = x \ {x'F UxAF}.
Remark. Itis important to note that inactive variables either
lead to unfeasible orchestration strategies or are insufficient
to fulfill any request. As a consequence, those variables will

9

always be set to zero. Therefore, both the AP and FP pre-
processing techniques described above reduce the number
of problem variables while still ensuring the optimality of
the computed solution [54]. Note that the activation of any
previously inactive variable, cannot in any way contribute to
the utility function), c7 YiV;, but only results in constraint
violations. This is due to the fact that y; = 1 if and only
if request ¢ is satisfied and the solution is feasible. Both
of these conditions are unattainable by inactive variables
which, as described above, either lead to unfeasible solu-
tions or are insufficient to satisfy any request. The impact
of these procedures on the complexity of the orchestration
problem will be investigated in Section 7.

6.2 Graph Tree Branching

To further reduce the complexity of the problem, in this
section we present a solution to Problem (11) that leverages
the tree structure of the RAN infrastructure to split the
optimization problem into smaller instances that are solved
independently.

Notice that x| = O(IFD?MCyay), i-e., the number of
variables of the orchestration problem grows quadratically
in the number D of nodes. This becomes critical when a few
tens of RICs are expected to control and interact with tens of
thousands of RUs, DUs and CUs deployed across multiple
regions. Since the majority of nodes of the infrastructure are
RUs, DUs and CU s, it is reasonable to conclude that these
nodes are the major source of complexity. Moreover, O-RAN
systems operate following a cluster-based approach where
each near-RT RIC controls a subset of CUs, DUs and RUs of
the network only, i.e., a cluster, which have no (or limited)
interactions with nodes from other clusters.

These two intuitions are the rationale behind the low-
complexity and scalable solution proposed in this sec-
tion, which consists in splitting the infrastructure tree into
smaller subtrees—each operating as an individual cluster—
and creating sub-instances of the orchestration problem
that only accounts for requests and nodes regarding the
considered subtree. The main steps of this algorithm are:

o Step I: Let C be the number of near-RT RICs in the non-
RT RIC domain. For each cluster ¢, the c-th subtree
D, C D is defined such that D = Ule D, and
N, D. = d°t, with d°" being the non-RT RIC. A
variable g € {0,1} is used to determine whether a
node d belongs to cluster c or not. Specifically, og,c = 1
if the node belongs to cluster ¢, g, = 0 otherwise.
Since, N, D, = d"°°t, we have that >, ag. = 1 for
any d € D\ {d™°};

o Step II: For each subtree D, we identify the subset Z. C
Zsuchthat Z. = {i € T : 3 ;c7d yep, Tifud = 1}
contains all the requests that involve nodes belonging
to cluster c only;

e Step III: We solve Problem (11) via B&B considering
only requests in Z, and nodes in D,. The solution is
a tuple (Xc, ¥¢, z¢) specifying which models are instan-
tiated and where (x.), which requests are satisfied in
cluster ¢ (y.) and what instances of the models are
instantiated on each node of D, (z.).

Remark. This branching procedure might compute solu-
tions with partially satisfied requests. These are requests that

are accommodated on a subset of clusters only, which vi-
olates Constraint 1. However, as we will show in Section

10

Table 2
Controllable nodes.

7, this procedure is scalable as each subtree D. involves a Requested Nodes
limited number of nodes only, and we can solve each lower- | case non-RT RIC | near-RT RIC | CU | DU | RU
dimensional instance of Problem (11) in parallel and in less | Al nodes (ALL) v v VaNaN;
than 0.1 s. Edge and RAN (ER) x v ARAN
The procedures involved in the computation of the [RaNonly (RO) X X VAN
solution to the orchestration problem are summarized as
pseudocode in Algorithm 1. Table 3
Request time scale cases and probabilities.
Algorithm 1: Orchestration Engine pseudo-code Time scale |11 el - < 0.01s | Sub-second - < 1s Long - > 1s
Result: A solution tuple (x,y, z) Case
while True do Delay-Tolerant (DT) 0.2 0.2 0.6
Wait to collect requests from NOs; Low Latency (LL) 02 06 02
if Complexity reduction needed then Ultra-Low Latency (ULL) 0.6 0.4 0
‘ Apply FP, AP and/or Graph Tree Branching;
end 10° —H&— Full complexity —H&— Full complexity
Generate problem instance; 2 e e = O e
Solve problem and Compute (X, Y, z) via _‘_-E — A - Branching+FP+AP e — A —Branching+FP+AP
Branch-and-Bound; 2 X a--TT A ‘g
Generate rApp, xApp, dApp containers; % 104l 7 5
Dispatch and instantiate containers; E g PN N A
end = S -
0 500 1000 1500 2000 500 1000 1500 2000

7 NUMERICAL EVALUATION

To evaluate the performance of OrchestRAN in large-scale
scenarios, we have developed a simulation tool in MAT-
LAB that uses CPLEX to execute optimization routines. For
each simulation, NOs submit R = 20 randomly generated
requests, each specifying multiple sets of functionalities and
nodes, as well as the desired time scale. Unless otherwise
stated, we consider a single-domain deployment with 1 non-
RT RIC, 4 near-RT RICs, 10 CUs, 30 DUs and 90 RUs. For
each simulation, the number of network nodes is fixed, but
the tree structure of the infrastructure is randomly gener-
ated. We consider the three cases shown in Table 2, where
we limit the type of nodes that can be included in each
request. Similarly, we also consider the three cases in Table 3.
For each case, we specify the probability that the latency
requirement d; ¢ 4 for each tuple (4, f, d) is associated to a
specific time scale. The combination of these 6 cases covers
relevant Open RAN applications.

The ML/AI Catalog consists of M = 13 models that
provide F' = 7 different functionalities. Ten models use
metrics from the RAN (e.g., throughput and buffer measure-
ments) as input, while the remaining three models are fed
with IQ samples from RUs. The input size s, is set to 100
and 1000 bytes for the metrics and IQ samples, respectively.
For the sake of illustration, we assume that 3,, .4 = om, ¢,
T f,d = Ti,f.d and Cm,d =3 forallm € M, i € F,
f € Fand d € D. The execution time of each model is
equal across all models and nodes and set to 77775 = 1 ms.
The available bandwidth bg 4 is 100 Gbps between non-RT
RIC and near-RT RIC, 50 Gbps between near-RT RICs and
CUs, 25 Gbps between CUs and DUs, and 20 Gbps between
DUs and RUs, while the propagation delay T} 4 is set to
[10,10,5, 1] ms, respectively. The resources p, available at
each node are represented by the number of available CPU

Number of nodes Number of nodes

Figure 5. Number of variables and computation time for different network
size.

cores, and we assume that each model requests one core
only, i.e., p, = 1. The number of cores available at non-RT
RICs, near-RT RICs, CUs, DUs and RUs are 128, 8, 4, 2, and
1, respectively. Results presented in this section are averaged
over 100 independent simulation runs.

o Computational complexity. We start our analysis by present-
ing results on the computational complexity of OrchestRAN
and of the optimization algorithms of Section 6. Fig. 5
shows the number of optimization variables and compu-
tation time of our algorithms with varying network size. At
each simulation run, we consider a single non-RT RIC and a
randomly generated tree graph that matches the considered
size. As expected, the number of variables and the com-
plexity increase with larger networks. This can be mitigated
by using our FP and AP pre-processing algorithms, which
reduce the number of optimization variables while ensuring
the optimality of the computed solution. Their combination
allows computation of optimal solutions in 0.1 s and 2 s for
networks with 200 and 500 nodes, respectively. Fig. 5 also
shows the benefits of branching the optimization problem
into sub-problems of smaller size (Section 6.2). Although
the branching procedure might produce partially satisfied
requests, it results in a computation time lower than 0.1 s
even for instances with 2000 nodes, providing a fast and
scalable solution for large-scale applications.

o Acceptance ratio. Fig. 6 (left) shows the acceptance ratio
for different cases and algorithms. The number of accepted
requests decreases when moving from loose timing require-
ments (i.e., Delay-tolerant (DT)), to tighter ones (i.e.,, Low
Latency (LL) and Ultra-Low Latency (ULL)). For example,
while 95% of requests are satisfied on average for the DT
configuration, we observe ULL instances in which only 70%

w/o branching w/ branching

3189
[

+

o4
©

1
0.9

F O

i

ALL ER RO ALL ER RO
“:| Delay-tolerant (DT) [|Lowlatency (LL) [Ultra-low Latency (ULL) ‘

Acceptance ratio
o
(o=
o
©

e
~
e
~

Partial acceptance ratio

Figure 6. (Left) Ratio of accepted requests w/ model sharing but w/o
branching; (Right) Ratio of partially accepted requests w/ model sharing
and branching.

of requests are accepted. Indeed, TTI-level services may
only be possible at the DUs/RUs which, however, have
limited resources and cannot support the execution of many
concurrent O-RAN applications. In Fig. 6 (right), we show
the probability that a request is partially accepted when
considering the branching algorithm. Specifically, it shows
that branching results in ~99% of requests being partially
satisfied on one subtree or more. This means that in the
case where not enough resources are available to accept the
entirety of the request, OrchestRAN can satisfy portions of
it. Thus, requests that would be otherwise rejected can be at
least partially accommodated.

o Advantages of model sharing. Fig. 7 shows the resource uti-
lization with and without model sharing (left) and the cor-
responding resource utilization saving (right). As expected,
model sharing always results in lower resource utilization
and uses 2x less resources than the case without model
sharing. Fig. 8 shows the acceptance ratio when model
sharing is disabled, and by comparing it with Fig. 6 (left)—
where model sharing is enabled—we notice that model shar-
ing also increases the acceptance ratio. Specifically, model
sharing accommodates at least 90% of requests in all cases,
while this number drops to ~70% when model sharing is
disabled.

[_—__]w/ model sharing
[——"1w/o model sharing

Total resource utilization

Figure 7. Resource utilization and saving with and without model shar-
ing.

To better understand how OrchestRAN orchestrates in-
telligence, Fig. 9 shows the distribution of models across
the different network nodes for the ER case (see Table 2)
with different timing constraints. Requests with loose timing
requirements (DT) result in ~45% of models being allocated
in the RICs. Instead, stringent timing constraints (LL and
ULL) result in ~70% of models being instantiated at CUs,
DUs, and RUs.

In Fig. 10, we show the percentage of shared models
under the same configurations considered in Fig. 7. We show
that in most cases, more than 30% of the ML/AI models
can be shared (assuming that all requests support sharing),

11

o 0 oL 04 —_JerDT
1 c [__JERLL
2 ER/ULL T I +

o 09 303 % %]
% 0o £ | ; I
SR |
2 E | I 1
e [T Se l
< 9 1

05 2 +

I
~

nonRT nearRT cu DU RU
RIC RIC

ALL ER RO

Figure 9. Distribution of model instantiation
for different cases.

Figure 8. Percentage of
accepted requests w/o
model sharing for differ-
ent cases.

with peaks of 55% sharing ratio in the DT case, which is
tolerant to latency introduced by models being shared and
deployed at higher levels of the O-RAN architecture (e.g.,
non-RT RIC).

o Model outsourcing. Finally, we investigate how Orches-
tRAN performs model outsourcing (e.g., instantiating a
ML/AI model on a node different from the one requested
by the NO while maintaining compliance with timing and
controllability constraints). In Fig. 11, we report the ratio of
ML/AI models being instantiated at levels of the network
that are different from the ones originally requested by the
NOs in the ULL case (i.e., NOs request ML/ Al models that
perform inference and control with time scales lower than
10 ms). Our results show that the majority of the ML/AI
models is instantiated at levels that are lower than the re-
quested one, with only a minimal portion being instantiated
at levels that are hierarchically higher. Intuitively, since most
requests demand for real-time ML/ AI, OrchestRAN decides
to instantiate the intelligence closer to the edge, so as to meet
latency requirements and satisfy NOs requests.

0.6 1
\ DT L oLt

[JALULL
[_JERMULL
RAN/ULL

o

13

a
o
@

1

Shared models ratio
)
o N ©
S (4 o
—
—_—
— T
—_
Displacement ratio
o o
S o

0.35 l l 02 I%l é 1

0.3 + H ? %' T

0.25 Higher Same Lower
ALL ER RO Instantiation level

Figure 10. Percentage of shared
ML/Al models for different cases.

Figure 11. Displacement ratio for
different cases in the ULL sce-
nario.

In Fig. 12, we instead show the probability that a model
requested at a certain node is outsourced to another node at
a higher or lower hierarchy level.

We notice that in the ULL case (bottom part of the
figure), the probability of instantiating a model at RAN
nodes is high with CUs and DUs being the preferred nodes
to instantiate ML/AI models to meet the stringent timing
requirements. On the contrary, in the DT case (top part of
the figure), we see that a higher percentage of models are
instantiated on the RICs even if they are being requested
to execute at the RAN (e.g.,, ALL/DT and ER/DT). These
results show that, in general, when the timing constraints
are stringent, model outsourcing is unlikely to happen. On
the contrary, when the timing constraints are leaning more

toward non-real-time execution (e.g., DT case) the RICs are
preferred locations to accommodate models thanks to their
higher resource availability.

ALLDT

ER/DT

=
—

ER/ULL

RO/DT

RU

DU

cu
nearRT-RIC
nonRT-RIC

ALL/ULL

Requested

RO/ULL 025

RU

bu

cu
nearRT-RIC
nonRT-RIC

Requested

B O I I R Pr P U I RS
RO o o

Instantiated Instantiated Instantiated

Figure 12. Model outsourcing analysis for different cases.

8 PROTOTYPE IMPLEMENTATION

To demonstrate the effectiveness of OrchestRAN, we lever-
aged OpenRAN Gym [55], an O-RAN-compliant and open
source large-scale experimental platform developed on top
of the Colosseum wireless network emulator [29]. Colos-
seum includes 128 computing servers (i.e., Standard Radio
Nodes (SRNs)), each controlling a USRP X310 Software-
defined Radio (SDR), and a Massive Channel Emulator
(MCHEM) emulating wireless channels between the SRNs
to reproduce realistic and time-varying wireless characteris-
tics (e.g., path-loss, multi-path) under different deployments
(e.g., urban, rural, etc.) [29].

We leverage the publicly available tool SCOPE [34] to
instantiate a softwarized cellular network with 7 base sta-
tions and 42 User Equipments (UEs) (6 UEs per base station)
on the Colosseum city-scale downtown Rome scenario, and
to interface the base stations with the O-RAN near-RT
RIC through the E2 interface. SCOPE, which is based on
srsRAN [56], implements open Application Programming
Interfaces (APIs) to reconfigure the base station parame-
ters (e.g., slicing resources, scheduling policies, etc.) from
O-RAN applications through closed-control loops, and to
automatically generate datasets from RAN statistics (e.g.,
throughput, buffer size, etc.). Users are deployed randomly
and generate traffic belonging to 3 different network slices
configured as follows: (i) slice 0 is allocated an Enhanced
Mobile Broadband (eMBB) service, in which each UE re-
quests 4 Mbps constant bitrate traffic; (ii) slice 1 a Machine-
type Communications (MTC) service, in which each UE
requests Poisson-distributed traffic with an average rate
of 45 kbps, and (iii) slice 2 to a Ultra Reliable and Low
Latency Communication (URLLC) service, in which each
UE requests Poisson-distributed traffic with an average rate
of 90 kbps. We assume 2 UEs per slice, whose traffic is
handled by the base stations, which use a 10 MHz channel
bandwidth with 50 Physical Resource Block (PRB).

The high-level architecture of the OrchestRAN proto-
type on Colosseum, based on the OpenRAN Gym frame-
work [55], is shown in Fig. 13. OrchestRAN runs in an
Linux Container (LXC) embedding the components of Fig 2.
For each experiment, we randomly generate a new set of
requests every 4 minutes. The Orchestration Engine com-
putes the optimal orchestration policy and embeds the

12

models within O-RAN applications, e.g., xApp and dApps,
that are dispatched to the nodes where they are executed.
Specifically, xApps are instantiated on the ColO-RAN near-
RT RIC [28] that runs in the form of Docker containers
inside one of Colosseum SRNs. By leveraging the O-RAN
E2 termination, these xApps interface with the RAN base
stations to receive periodic KPIs and send the computed
control actions. Similarly, dApps are instantiated on the
cellular base station, implemented on Colosseum through
the SCOPE framework [34]. After their instantiation, these
applications interface with the underlying cellular proto-
col stack to take some control actions based on the run-
time KPIs of the softwarized base station, which provides
service to cellular UEs—implemented as additional SRNs
on Colosseum—through the wireless scenarios emulated by
MCHEM (see Fig. 13).

8.1 ML/AI Catalog creation

Since the focus of this paper is on orchestrating network in-
telligence rather than generating the actual ML/AI models
that will be used for inference and control of the network,
in this paper we use as a reference the set of ML/AI models
developed and described in great details in our previous
work [28]. These models have been trained via datasets
collected via SCOPE [34] on Colosseum [29]. The datasets
used in this paper are described in detail in [28], which also
include a link to the publicly available repository that can
be downloaded from GitHub.

In this work, we consider four ML/AI models that let
us cover both prediction and control tasks. Models M1
and M2 have been trained to forecast the evolution of
throughput and transmission buffer size KPIs. Both models
use the same Downlink (DL) architecture that consists of a
neural network with three fully connected layers with ReLu
activation function. The first layer has a tunable number
of neurons depending on the length of the input that will
be used to predict the next sample. In this case, both M1
and M2 forecast the next measurement by processing an
input represented by a one-dimensional array of size 10.
Therefore, the first layer has 10 neurons, the last layer has 1
neuron and the intermediate layer has 64 neurons. M1 and
M?2 are both trained using the Adam optimizer, a Mean
Squared Loss function and a learning rate of 0.001 with
batch size of 32.

Table 4
DRL agents in the ML/Al Catalog.
Reward
Slice 0 Slice 1 Slice 2 Actions
M3 | max(Throughput) | max(TX pkts) | max(PRB ratio) | Scheduling
M4 | max(Throughput) | max(TX pkts) | min(Buffer size) | Scheduling,
RAN slicing

Models M3 and M4 control the parameters of the
network to maximize different rewards through Proximal
Policy Optimization (PPO)-based DRL agents (see Table 4).
Specifically, M3 consists of three DRL agents, each making
decisions on the scheduling policies of one slice only. The
three agents aim at maximizing the throughput of slice 0,
the number of transmitted packets of slice 1, and the ratio

FRLRRRRERRRREE ™

E OrchestRAN

ColO-RAN NearRT RIC

3

XApps

uoneuIwIa)
4

Docker RIC cluster

ES g SN & SN g
iConnectorI I Connector I Colosseum SRN

|

13

vV x310

Base Station

SCOPE CU/DU s e
e é 2%
l|: dApps , RU =& 3
- - =7
O
3
Ty m3
=B Contr?l APIs NI USRP - ran
H c
5
)

Nis
wnasso|o) Ll
c
m

Colosseum SRN

Figure 13. OrchestRAN prototype architecture as implemented on Colosseum.

between the allocated and requested PRBs (i.e., the PRB
ratio which takes values in [0, 1]) of slice 2, respectively.
Model M4, instead, consists of a single DRL agent con-
trolling the scheduling and RAN slicing policies (i.e., how
many PRBs are assigned to each slice) to jointly maximize
the throughput of slice 0 and the number of transmitted
packets of slice 1, and to minimize the buffer size of slice 2.
Both models M3 and M4 follow an actor-critic architecture
where the actor takes decisions based on the current state of
the network while, during training, the critic is used to score
the actions taken by the actor and orient the latter toward
actions that yield higher rewards. Both actor and critic are
implemented via fully connected neural networks with 5
layers with 30 neurons each. We refer the reader to [28] for
more details on the training and design of the DRL agents
used in M3 and M4.

In all cases, the ML/AI models have been trained to
account for missing and/or incomplete data, for example,
due to low traffic load or varying number of UEs. In our
case, this is prevented by using a zero padding strategy,
which is also used during the training process to emulate
the case of input data with a size that is smaller than what
is required by the ML/AI model.

We consider the case where each model requires one
CPU core, as well as three different configurations: (i) “RIC
only”, in which models can be executed via xApps at the
near-RT RIC only; (ii) “RIC + lightweight DU”, in which
DUs have 2 cores each to execute up to two dApps concur-
rently; and (iii) “RIC + powerful DU”, in which DUs are
equipped with 8 cores. In all cases, the near-RT RIC has
access to 50 cores. Overall, we ran more than 95 hours of
experiments on Colosseum.

8.2 Orchestration policy definition

Once the orchestration policy x has been computed by
OrchestRAN, it gets converted automatically into a JSON
formatted file that specifies the ML/AI models to be de-
ployed (through the model_name keyword), where they
should execute (node_name), and which nodes will provide
input data to the different models (input_device_id).
Listing 1 shows an example of an orchestration policy that
includes one xApp embedding model M4 (see Table 4) to be
executed on the near-RT RIC to control DU 1, and a dApp
embedding model M3 to be executed on DU 7 and locally
control its scheduling decisions. The JSON file is parsed by
OrchestRAN that leverages the above keywords to perform

1A

2 "policy": [

3 {

4 "model_name": "M4",

5 "node_name": "near_rt_ric",

6 "input_device_id": "DU 1"
I

8 {

9 "model_name": "M3",

10 "node_name": "DU 7",

11 "input_device_id": "DU 7"

12 }

13]

u }

Listing 1. An example of an orchestration policy in JSON format

including one xApp and one dApp.

0.8 1
+4% 5
206 =
> +37% =
g 04 2os
g o | <
202 H +50% _%
Q
< pll] £ [0 1
0 Z 0
5 20 60 < 5 20 60

Number of requests
‘:] RIC only [____]RIC + DU - Low capacity

Number of requests
[C_IRIC + DU - High capacity _|

Figure 14. (Left) Ratio of accepted requests for different configurations;
(right) probability of instantiating O-RAN applications at the near-RT RIC

the actual deployment on the requested nodes. As an ex-
ample, the values associated to the model_name keyword
(e.g., M3 and M4) are replaced with the Docker image of the
specific models, and the values of the input_device_id
keyword are passed to the xApp/dApp Docker containers
that subscribe to the appropriate nodes. Finally, the com-
mands to instantiate the requested xApps and dApps are
issued by OrchestRAN on the nodes specified through the
node_name keyword.

9 EXPERIMENTAL RESULTS

In Fig. 14 (left), we show the ratio of requests accepted by
OrchestRAN in our prototype. When all requests can be
satisfied via xApps and rApps only (i.e., “RIC only” case),
the acceptance ratio is lower than the case where dApps
can also be used to execute such intelligence. Specifically,
introducing dApps via DUs capable of executing ML/AI
models to reconfigure their protocol stack results in an
increase in acceptance ratio ranging from 4% in the “RIC

[HRIC only [CTJRIC + Lightweight DU [___JRIC + Powerful DU__ |

25

2

E ¢ 12.6)(
2.4x

1
” m ﬁ

o m |

20 60

Number of requests

E2 traffic [Mbyte]
P

Figure 15. Traffic over O-RAN E2 interface for different configurations.
Dark bars represent traffic related to payload only.

M1 ‘ ‘ ‘ 2 m RIC
M2|]
M3 HE—— 11 |ou
M4 ‘ ‘ ‘ 1
off
7 | 50
S5 : 40
= I
2879 = ST 430 o =
25 ,l M3 active M4 active | =
| 20 22
=3 [o2
2 x5
< 14 0
£
0 \ .
oy T 1
2 | | UET] |
S ———UE2| | o
8 [P L Zq
12 g, W % 05° g
5 vt oo, VPR, | A N - %
£ < 32}
3 |
o
0 L 1 L I | | |
0 200 400 600 800 1000 1200 1400
Time [s]

Figure 16. (Top) Dynamic activation of O-RAN applications at near-
RT RIC and DU 7; (Center and bottom) Performance comparison for
different deployments of O-RAN applications and network slices. Solid
lines and dashed lines refer to traffic for UE; ; and UE, ; of Slice i.

only” case to 50% in the “RIC + powerful DU” case. These
results show that extending intelligence to the very edge
of the network makes it possible to offload control and
inference tasks to the RAN and accommodate more requests
from the NOs.

Fig. 14 (right) shows the probability that models are
executed at the near-RT RIC for different configurations
and number of requests. As expected, in the “RIC only”
case, all models execute as xApps at the near-RT RIC, while
both “RIC + lightweight DU” and “RIC + powerful DU”
cases result in ~25% of models executing at the RIC. The
remaining 75% of the models are executed as dApps at
the DUs. Fig. 15 shows the traffic in MByte over the E2
interface between the near-RT RIC and the DUs for the
different configurations. This includes messages to set up
the initial subscription between the near-RT RIC and the
DUs, messages to report metrics from the DUs to the RIC
(e.g., throughput, buffer size), and control messages from
the RIC to the DUs (e.g., to update scheduling and RAN
slicing policies). Results clearly show that ~40% of the E2
traffic transports payload information (dark bars), while
the remaining 60% consists of overhead data. Although the
initial subscription messages exchanged between the near-
RT RIC and the DUs are sent in all considered cases, running
models as dApps at the DUs still results in up to 2.6x less
E2 traffic if compared to the “RIC only” case.

Finally, we showcase the impact of the real-time execu-
tion of OrchestRAN on the network performance. We focus
on DU 7, and in Fig. 16 (top) we show the location and time
instant at which OrchestRAN instantiates the four models
on the near-RT RIC and on base station 7 (i.e., referred to

14

DU 7 for simplicity) for a single experiment. The impact
on the network performance of the different orchestration
policies is shown in Fig. 16 (center and bottom). Since M1
and M2 perform forecasting tasks only, the figure only
reports the evolution of the metrics used to reward the DRL
agents M3 and M4 (see Table 4) for different slices. We
notice that OrchestRAN allows the seamless instantiation
of dApps and xApps, controlling the same DU without
causing any service interruptions. Moreover, although M3
and M4 share the same reward for slices 0 and 1, M4 can
also make decisions on the network slicing policies. Thus,
it provides a higher throughput for slice 0 (=10% higher
than M3), and a higher number of transmitted packets for
slice 1 (=2 x higher than M 3) (Fig. 16 (center)). Similarly, in
the case of slice 2, M3 aims at maximizing the PRB ratio,
while M4 at minimizing the size of the transmission buffer,
which results in M3 and M4 computing different control
policies for slice 2. As shown Fig. 16 (bottom), although M3
converges to a stable control policy that results in a PRB ratio
~1, its buffer size is higher than that of AM/4. Conversely, the
buffer size of slice 2 decreases once M4 is instantiated with
a decrease in the PRB ratio.

10 CONCLUSIONS

In this paper, we presented OrchestRAN, a novel network
intelligence orchestration framework for Open RAN sys-
tems. OrchestRAN is based upon O-RAN specifications and
leverages the RIC xApps and rApps and O-RAN open inter-
faces to provide NOs with an automated orchestration tool
for deploying data-driven inference and control solutions
with diverse timing requirements. OrchestRAN has been
equipped with orchestration algorithms with different op-
timality /complexity trade-offs to support non-RT, near-RT
and RT applications. We assessed OrchestRAN performance
and presented an O-RAN-compliant prototype by instanti-
ating a cellular network with 7 base stations and 42 UEs on
the Colosseum network emulator. Our experimental results
demonstrate that OrchestRAN achieves seamless instanti-
ation of O-RAN applications at different network nodes
and time scales, and reduces the message overhead over
the O-RAN E2 interface by up to 2.6x when instantiating
intelligence at the edge of the network.

REFERENCES

[1] L. Bonati, M. Polese, S. D'Oro, S. Basagni, and T. Melodia, “Open,
Programmable, and Virtualized 5G Networks: State-of-the-Art
and the Road Ahead,” Computer Networks, vol. 182, pp. 1-28, Dec.
2020.

[2] O-RAN WGI, “O-RAN Architecture Description - v2.00,” Techni-
cal Specification, 2020.

[3] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, Interfaces, Algorithms, Secu-
rity, and Research Challenges,” IEEE Communications Surveys &
Tutorials, vol. 25, no. 2, pp. 13761411, January 2023.

[4] J. Du, C. Jiang, J. Wang, Y. Ren, and M. Debbah, “Machine
Learning for 6G Wireless Networks: Carrying Forward Enhanced
Bandwidth, Massive Access, and Ultrareliable/Low-Latency Ser-
vice,” IEEE Vehicular Technology Magazine, vol. 15, no. 4, pp. 122—
134, 2020.

[5] S.Shen, T. Zhang, S. Mao, and G.-K. Chang, “DRL-Based Channel
and Latency Aware Radio Resource Allocation for 5G Service-
Oriented RoF-mmWave RAN,” Journal of Lightwave Technology,
2021.

6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Okic, L. Zanzi, V. Sciancalepore, A. Redondi, and X. Costa-
Pérez, “m-ROAD: a Learn-as-You-Go Framework for On-Demand
Emergency Slices in V2X Scenarios,” in Proc. of IEEE INFOCOM,
2021.

D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs,
and X. Costa-Perez, “Network Slicing Meets Artificial Intelligence:
An Al-based Framework for Slice Management,” IEEE Communi-
cations Magazine, vol. 58, no. 6, pp. 32-38, 2020.

L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intel-
ligence and Learning in O-RAN for Data-driven NextG Cellular
Networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 21—
27, October 2021.

S. Bakri, P. A. Frangoudis, A. Ksentini, and M. Bouaziz, “Data-
Driven RAN Slicing Mechanisms for 5G and Beyond,” IEEE Trans.
on Network and Service Management, 2021.

N. Salhab, R. Langar, R. Rahim, S. Cherrier, and A. Outta-
garts, “Autonomous Network Slicing Prototype Using Machine-
Learning-Based Forecasting for Radio Resources,” IEEE Communi-
cations Magazine, vol. 59, no. 6, pp. 73-79, 2021.

J. Mei, X. Wang, K. Zheng, G. Boudreau, A. B. Sediq, and H. Abou-
zeid, “Intelligent Radio Access Network Slicing for Service Pro-
visioning in 6G: A Hierarchical Deep Reinforcement Learning
Approach,” IEEE Trans. on Communications, 2021.

J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-
Perez, A. Banchs, and J. J. Alcaraz, “vrAln: Deep Learning based
Orchestration for Computing and Radio Resources in vRANSs,”
IEEE Trans. on Mobile Computing, 2020.

L. Bonati, S. D’Oro, L. Bertizzolo, E. Demirors, Z. Guan, S. Basagni,
and T. Melodia, “CellOS: Zero-touch Softwarized Open Cellular
Networks,” Computer Networks, vol. 180, pp. 1-13, Oct. 2020.

B. Casasole, L. Bonati, S. D’Oro, S. Basagni, A. Capone, and
T. Melodia, “QCell: Self-optimization of Softwarized 5G Networks
through Deep Q-learning,” in Proc. of IEEE GLOBECOM, 2021.

L. Baldesi, F. Restuccia, and T. Melodia, “ChARM: NextG Spec-
trum Sharing Through Data-Driven Real-Time O-RAN Dynamic
Control,” in IEEE INFOCOM 2022 - IEEE Conference on Computer
Communications, May 2022.

D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Optimizing Resource Provisioning in Network Slicing
with Al-based Capacity Forecasting,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 2, pp. 361-376, 2019.

U. Paul, J. Liu, S. Troia, O. Falowo, and G. Maier, “Traffic-profile
and Machine Learning Based Regional Data Center Design and
Operation for 5G Network,” Journal of Comm. and Networks, vol. 21,
no. 6, 2019.

M. Polese, F. Restuccia, and T. Melodia, “DeepBeam: Deep
Waveform Learning for Coordination-Free Beam Management in
mmWave Networks,” Proc. of ACM MobiHoc, 2021.

A. Klautau, P. Batista, N. Gonzalez-Prelcic, Y. Wang, and R. W.
Heath, “5G MIMO Data for Machine Learning: Application to
Beam-selection Using Deep Learning,” in Proc. of ITA Workshop,
2018.

C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, “Channel State Informa-
tion Prediction for 5G Wireless Communications: A Deep Learning
Approach,” IEEE Trans. on Network Science and Engineering, vol. 7,
no. 1, pp. 227-236, 2018.

R. Joda, T. Pamuklu, P. E. Iturria-Rivera, and M. Erol-Kantarci,
“Deep reinforcement learning-based joint user association and cu-
du placement in o-ran,” IEEE Transactions on Network and Service
Management, pp. 1-1, 2022.

E. Z. Morais, G. M. de Almeida, L. Pinto, K. V. Cardoso, L. M. Con-
treras, R. d. R. Righi, and C. B. Both, “PlaceRAN: Optimal Place-
ment of Virtualized Network Functions in the Next-generation
Radio Access Networks,” arXiv:2102.13192 [cs.NI], 2021.

J. M. DeAlmeida, L. DaSilva, C. B. Bonato Both, C. G. Ralha, and
M. A. Marotta, “Artificial Intelligence-Driven Fog Radio Access
Networks: Integrating Decision Making Considering Different
Time Granularities,” IEEE Vehicular Technology Magazine, 2021.

T. S. Salem, G. Castellano, G. Neglia, F. Pianese, and A. Araldo,
“Towards Inference Delivery Networks: Distributing Machine
Learning with Optimality Guarantees,” in Proc. of IEEE MedHoc-
Net, 2021.

S. D’Oro, M. Polese, L. Bonati, H. Cheng, and T. Melodia, “dApps:
Distributed Applications for Real-time Inference and Control in O-
RAN,” IEEE Communications Magazine, vol. 60, no. 11, pp. 52-58,
2022.

F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” ACM Computing

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

15

Surveys (CSUR), vol. 53, no. 3, pp. 1-35, 2020.

Z. Usmani and S. Singh, “A survey of virtual machine placement
techniques in a cloud data center,” Procedia Computer Science,
vol. 78, pp. 491498, 2016.

M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-
RAN: Developing Machine Learning-based xApps for Open RAN
Closed-loop Control on Programmable Experimental Platforms,”
arXiv:2112.09559 [cs.NI], 2021.

L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder, A. Bagga,
P. Patel, V. Petkov, M. Seltser, F. Restuccia, A. Gosain, K. R.
Chowdhury, S. Basagni, and T. Melodia, “Colosseum: Large-
Scale Wireless Experimentation Through Hardware-in-the-Loop
Network Emulation,” in Proc. of IEEE DySPAN, 2021.

S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “OrchestRAN: Net-
work Automation through Orchestrated Intelligence in the Open
RAN,” in IEEE INFOCOM 2022 - IEEE Conference on Computer
Communications, May 2022.

M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi,
“Machine Learning at the Edge: A Data-driven Architecture with
Applications to 5G Cellular Networks,” IEEE Trans. on Mobile
Computing, 2020.

Y. Li, B. Liang, and A. Tizghadam, “Robust Online Learning
against Malicious Manipulation and Feedback Delay with Appli-
cation to Network Flow Classification,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 8, pp. 2648-2663, 2021.

T. N. Weerasinghe, 1. A. Balapuwaduge, and E. Y. Li, “Supervised
Learning Based Arrival Prediction and Dynamic Preamble Allo-
cation for Bursty Traffic,” in Proc. of IEEE INFOCOM Workshops,
2019.

L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An Open
and Softwarized Prototyping Platform for NextG Systems,” in
Proc. of ACM MobySys, 2021.

H. Chergui and C. Verikoukis, “OPEX-Limited 5G RAN Slicing:
An Over-Dataset Constrained Deep Learning Approach,” in Proc.
of IEEE ICC, 2020.

H. Lee, J. Cha, D. Kwon, M. Jeong, and L. Park, “Hosting AI/ML
Workflows on O-RAN RIC Platform,” in Proc. of IEEE GLOBECOM
Workshops, 2020.

J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and
G. losifidis, “Bayesian Online Learning for Energy-Aware Re-
source Orchestration in Virtualized RANs,” in Proc. of IEEE IN-
FOCOM, 2021.

R. Singh, C. Hasan, X. Foukas, M. Fiore, M. K. Marina, and
Y. Wang, “Energy-Efficient Orchestration of Metro-Scale 5G Radio
Access Networks,” in Proc. of IEEE INFOCOM, 2021.

S. Chatterjee, M. J. Abdel-Rahman, and A. B. MacKenzie, “On
Optimal Orchestration of Virtualized Cellular Networks with
Statistical Multiplexing,” IEEE Trans. on Wireless Communications,
2021.

C. Puligheddu, J. Ashdown, C. E. Chiasserini, and F. Restuccia,
“SEM-O-RAN: Semantic and Flexible O-RAN Slicing for NextG
Edge-Assisted Mobile Systems,” in Proceedings of IEEE INFOCOM
2023 (preprint available as arXiv:2212.11853 [cs.NI]), New York Area,
NJ, USA, May 2023.

S. Matoussi, I. Fajjari, S. Costanzo, N. Aitsaadi, and R. Langar, “5G
RAN: Functional Split Orchestration Optimization,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 7, pp. 1448-1463,
2020.

J. Baranda,]. Mangues-Bafalluy, E. Zeydan, L. Vettori, R. Martinez,
X. Li, A. Garcia-Saavedra, C.-F. Chiasserini, C. Casetti et al.,
“On the Integration of AI/ML-based Scaling Operations in the
5Growth Platform,” in Proc. of IEEE NFV-SDN, 2020.

J. Baranda,]. Mangues-Bafalluy, E. Zeydan, C. Casetti, C. F. Chi-
asserini, M. Malinverno, C. Puligheddu, M. Groshev et al., “Demo:
AIML-as-a-Service for SLA management of a Digital Twin Virtual
Network Service,” in Proc. of IEEE INFOCOM Workshops, 2021.

X. Li et al., “5Growth: An End-to-End Service Platform for Auto-
mated Deployment and Management of Vertical Services over 5G
Networks,” IEEE Communications Magazine, vol. 59, no. 3, 2021.
O-RAN Working Group 4, “O-RAN Fronthaul Control, User
and Synchronization Plane Specification 7.0,” ORAN-WG4.CUS.0-
v07.00 Technical Specification, July 2021.

O-RAN WGS3, “O-RAN Near-Real-time RAN Intelligent Controller
E2 Service Model 1.0,” Technical Specification, February 2020.

S. D’Oro, L. Bonati, F. Restuccia, and T. Melodia, “Coordinated
5G Network Slicing: How Constructive Interference Can Boost
Network Throughput,” IEEE/ACM Trans. on Networking, vol. 29,

no. 4, 2021.

[48] S. D'Oro, F. Restuccia, and T. Melodia, “Toward Operator-to-
Waveform 5G Radio Access Network Slicing,” IEEE Communica-
tions Magazine, vol. 58, no. 4, pp. 18-23, April 2020.

[49] S. D’Oro, L. Bonati, F. Restuccia, M. Polese, M. Zorzi, and T. Melo-
dia, “SI-EDGE: Network Slicing at the Edge,” in Proc. of ACM
Mobihoc, 2020.

[50] O-RAN WG2, “O-RAN AI/ML Workflow Description and Re-
quirements - v1.01,” Technical Specification, Apr. 2020.

[51] R. Raman and I. Grossmann, “Modelling and Computational
Techniques for Logic Based Integer Programming,” Computers &
Chemical Engineering, vol. 18, no. 7, pp. 563-578, 1994.

[52] R. M. Karp, “Reducibility Among Combinatorial Problems,” in
Complexity of Computer Computations, 1972, pp. 85-103.

[53] L. A. Wolsey, Integer programming. John Wiley & Sons, 2020.

[54] X. Li, Q. Zhai, J. Zhou, and X. Guan, “A Variable Reduction
Method for Large-Scale Unit Commitment,” IEEE Trans. on Power
Systems, vol. 35, no. 1, pp. 261-272, 2020.

[55] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open-
RAN Gym: AI/ML Development, Data Collection, and Testing
for O-RAN on PAWR Platforms,” Computer Networks, pp. 1-12,
November 2022.

[56] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srsLTE: An Open-source Platform for
LTE Evolution and Experimentation,” in Proc. of ACM WiNTECH,
2016.

Salvatore D’Oro is a Research Assistant Pro-
fessor at Northeastern University. He received
his Ph.D. degree from the University of Cata-
nia in 2015. He is one of the contributors to
OpenRAN Gym, the first open-source research
platform for Al/ML applications in the Open RAN.
Dr. D’Oro’s research interests include optimiza-
tion, artificial intelligence, security, network slic-
ing and their applications to 5G networks and be-
yond, with specific focus on Open RAN systems.
Salvatore is an area editor of Elsevier Computer
Communications journal and serves on the Technical Program Commit-
tee (TPC) of multiple conferences and workshops such as IEEE INFO-
COM, IEEE CCNC, IEEE ICC and IFIP Networking. He is a Member of
the IEEE.

Leonardo Bonati is an Associate Research
Scientist at the Institute for the Wireless Inter-
net of Things, Northeastern University, Boston,
MA. He received the Ph.D. degree in Com-
puter Engineering from Northeastern University
in 2022. His main research focuses on soft-
warized approaches for the Open Radio Access
Network (RAN) of the next generation of cellular
networks, on O-RAN-managed networks, and
on network automation and orchestration. He
served multiple times on the technical program
committee of the ACM Workshop on Wireless Network Testbeds, Ex-
perimental evaluation & Characterization, and as guest editor of the
special issue of Elsevier's Computer Networks journal on Advances in
Experimental Wireless Platforms and Systems.

16

Michele Polese is a Research Assistant Profes-
sor at the Institute for the Wireless Internet of
Things, Northeastern University, Boston, since
October 2023. He received his Ph.D. at the De-
partment of Information Engineering of the Uni-
versity of Padova in 2020. He then joined North-
eastern University as a research scientist and
part-time lecturer in 2020. During his Ph.D., he
visited New York University (NYU), AT&T Labs
in Bedminster, NJ, and Northeastern University.
His research interests are in the analysis and
development of protocols and architectures for future generations of cel-
lular networks (5G and beyond), in particular for millimeter-wave and ter-
ahertz networks, spectrum sharing and passive/active user coexistence,
open RAN development, and the performance evaluation of end-to-end,
complex networks. He has contributed to O-RAN technical specifications
and submitted responses to multiple FCC and NTIA notice of inquiry and
requests for comments, and is a member of the Committee on Radio
Frequency Allocations of the American Meteorological Society (2022-
2024). He was awarded with several best paper awards, is serving as
TPC co-chair for WNS3 2021-2022, as an Associate Technical Editor for
the IEEE Communications Magazine, and has organized the Open 5G
Forum in Fall 2021. He is a Member of the IEEE.

Tommaso Melodia is the William Lincoln Smith
Chair Professor with the Department of Electri-
cal and Computer Engineering at Northeastern
University in Boston. He is also the Founding
Director of the Institute for the Wireless Internet
of Things and the Director of Research for the
PAWR Project Office. He received his Ph.D. in
Electrical and Computer Engineering from the
Georgia Institute of Technology in 2007. He is
a recipient of the National Science Foundation
CAREER award. Prof. Melodia has served as
Associate Editor of IEEE Transactions on Wireless Communications,
IEEE Transactions on Mobile Computing, Elsevier Computer Networks,
among others. He has served as Technical Program Committee Chair
for IEEE Infocom 2018, General Chair for IEEE SECON 2019, ACM
Nanocom 2019, and ACM WUWnet 2014. Prof. Melodia is the Direc-
tor of Research for the Platforms for Advanced Wireless Research
(PAWR) Project Office, a $100M public-private partnership to establish
4 city-scale platforms for wireless research to advance the US wireless
ecosystem in years to come. Prof. Melodia’s research on modeling, opti-
mization, and experimental evaluation of Internet-of-Things and wireless
networked systems has been funded by the National Science Founda-
tion, the Air Force Research Laboratory the Office of Naval Research,
DARPA, and the Army Research Laboratory. Prof. Melodia is a Fellow of
the IEEE and a Senior Member of the ACM.

