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Abstract—The notions of softwarization and virtualization of
the radio access network (RAN) of next-generation (5G) wireless
systems are ushering in a vision where applications and services
are physically decoupled from devices and network infrastructure.
This crucial aspect will ultimately enable the dynamic deployment
of heterogeneous services by different network operators over the
same physical infrastructure. RAN slicing is a form of 5G virtual-
ization that allows network infrastructure owners to dynamically
“slice” and “serve” their network resources (i.e., spectrum, power,
antennas, among others) to different mobile virtual network oper-
ators (MVNOs), according to their current needs. Once the slicing
policy (i.e., the percentage of resources assigned to each MVNO)
has been computed, a major challenge is how to allocate spectrum
resources to MVNOs in such a way that (i) the slicing policy
defined by the network owner is enforced; and (ii) the interference
among different MVNOs is minimized. In this article, we mathe-
matically formalize the RAN slicing enforcement problem (RSEP)
and demonstrate its NP-hardness. For this reason, we design three
approximation algorithms that render the solution scalable as the
RSEP increases in size. We extensively evaluate their performance
through simulations and experiments on a testbed made up of
8 software-defined radio peripherals. Experimental results reveal
that not only do our algorithms enforce the slicing policies, but
can also double the total network throughput when intra-MVNO
power control policies are used in conjunction.

Index Terms—Network Slicing, 5G, Radio Access Network
(RAN), Interference Management.

I. INTRODUCTION

Recent studies indicate that the demand for faster, lower-
latency wireless cellular connection is growing exponentially
each year. By 2023, Ericsson has predicted that around 3.5
billion cellular IoT connections will be active, and more than
1 billion 5G subscriptions will be activated worldwide [1]. It
is now clear that existing one-size-fits-all resource allocation
policies will not be able to sustain the sheer need for dynamic,
effective and efficient radio access strategies, where network
operators will need to make the very best use of the extremely
limited spectrum bands available for commercial usage [2].

To address the above issues, radio access network (RAN)
slicing has been recently welcomed as a promising approach
by the academic and industrial communities alike [3–6]. RAN
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slicing completely overturns the traditional model of single
ownership of all network resources, and realizes a vision
where physical network infrastructure is shared among mul-
tiple mobile virtual network operators (MVNOs), each one
in charge of a separate “slice” of the network, which can
be assigned/revoked by the network owner according to the
current slicing policy. Although companies such as Amazon
or Microsoft apply similar concepts in the context of cloud
computing, RAN slicing is an intrinsically different problem,
since spectrum is a scarce resource for which over-provisioning
is not possible.

Once the RAN slices have been defined for each MVNO,
a core problem is how to divide and allocate the spectrum
resources, also called resource blocks (RBs), according to
what prescribed by the slicing policy. In other words, if (for
example) an MVNO has been assigned a slice of 15% of the
spectrum resources, such MVNO should receive approximately
15% of the available RBs. Thus, the design and evaluation
of RAN slicing enforcement algorithms is necessary to im-
plement in practice the network owner (NO)’s slicing policy.
Moreover, to be effective, RAN slicing enforcement algorithms
must facilitate interference-mitigating strategies such as inter-
base-station power control (IBSPC) [7, 8], MIMO [9], and
coordinated multi-point (CoMP) [9–11] schemes such as Joint
Transmission (JT) [12, 13]. However, since such technologies
require tight cooperation and coordination among different base
stations (BSs), it becomes imperative to design effective and
efficient slicing enforcement algorithms to guarantee that the
same (or similar in time/frequency) RBs are assigned to the
same MVNOs when BSs are close enough to interfere among
themselves.

To illustrate the above point, we consider the cellular net-
work scenario depicted in Figure 1. Here, the network owner
administers two BSs (assumed to be close enough to interfere
with each other) and 16 RBs (i.e., 4 frequency units during
4 time units). We consider the case where three MVNOs,
namely M1, M2 and M3, have been assigned the following
slice: M1 = 25%,M2 = 50%,M3 = 25%, on both the BSs.
Figure 1(a) shows an optimum slicing enforcement, represented
as two RB allocation matrices (RBAM), where inter-MVNO
interference is absent (i.e., MVNOs control the same RBs at
the two BSs). In this case, MVNOs have maximum flexibility
and can easily mitigate interference between their mobile users
(MUs) residing in the two BSs by using IBSPC. Conversely, the
right side of Figure 1 shows sub-optimum RBAMs which cause
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Fig. 1. Optimum and Sub-optimum RAN Slicing Enforcement.
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Fig. 3. The RAN slicing architecture.

To further investigate the issue of severe inter-MVNO inter-
ference, we ran a series of experiments on the testbed to be
discussed in detail in Section VII. In such experiments, the RBs
are assigned randomly to MVNOs according to the percentage
defined in the slicing policy. We performed channel estimation
and then applied IBSPC to keep inter-cell interference below
a fixed threshold. Figure 2, which depicts the total network
throughput as a function of time, indicates that by using IBSPC,
the network can increase its throughput by about 25%. In Sec-
tion VII, we show that an optimal slicing policy in conjunction
with IBSPC can double the network throughput with respect to
a random slicing enforcement algorithm.

The issue of RAN resource allocation has attracted large
research interest over the last few years [14–16]. However, the
problem of physical-level allocation of spectrum resources to
MVNOs still remains underexplored, as discussed in details in
Section II (Related Work). This is not without a reason; the
design of slicing enforcement algorithms presents the following
unique challenges, which are substantially absent in traditional
RAN resource allocation scenarios:

1) Feasibility: RBs need to be assigned to each MVNO
according to the slicing policy. In other words, if an
MVNO has been assigned 30% of spectrum resources by
the network owner, then it should receive 30% of the total
RBs available;

2) Orthogonality: at the same time, orthogonality among
each RAN slice must be ensured. That is, each RB should
be allocated to only one MVNO to avoid interference and
other performance-degrading factors [5, 17, 18];

3) Enabling of advanced 5G technologies: the RB alloca-
tion should facilitate advanced signal processing and RF
transmission technologies such as IBSPC, JC, CoMP and
MIMO, that considerably improve network performance
and have been envisioned to lead the way of 5G networks.

The objective of this work is to design, analyze and exper-
imentally evaluate RAN slicing enforcement algorithms that
address the three critical challenges mentioned above. Specifi-
cally, this paper makes the following contributions:
• We formulate the RAN slicing enforcement problem

(RSEP) in Section IV, and show that its optimization
version named RSEP-QP is NP-hard in Section V-A. To
this end, we propose (i) an approximated version of RSEP-
QP, named RSEP-EQ, in Section V-B; and (ii) a heuristic
algorithm named RSEP-MLF in Section V-C;

• We prove in Section V-D that the execution time of both
RSEP-QP and RSEP-EP can be drastically reduced (under
specific conditions) by solving an equivalent problem,
named the aggregated RSEP;

• We evaluate the performance of the proposed algorithms
through extensive simulations (Section VI) and through
experimental evaluation on a testbed composed of 8
USRP software-defined radio devices (Section VII). Re-
sults show that our approximation algorithms provide
throughput close to the the optimal solution, and that by
using IBSPC, our algorithms double the network through-
put with respect to a baseline algorithm where slices are
allocated in a random fashion.

II. RELATED WORK

The issue of dividing RAN resources among a set of MVNOs
has received significant interest from the research community
over the last years; for excellent surveys on the topic, the reader
is referred to [14, 15]. This problem (also referred to as RAN
slicing problem [5, 16, 19]) has been addressed by designing
solutions that use a variety of theoretical tools, ranging from
optimization [20–23], auctions [24] and game theory [25–27].

The key limitation of the work above is that it does not
show how to actually deploy RAN slices on top of the un-
derlying physical network. For this reason, the enforcement of
RAN slicing policies has attracted interest from the research
community. Prior work [5, 6, 28–30] provides high-level or-
chestration platforms that virtualize the available resources to
create pools of resources that are then shared and allocated
among the MVNOs. Although this approach is efficient from
a control and orchestration point of view, it might be ineffective
in those scenarios where fine-grained control of physical-layer
resources is required, for example, to enable IBSPC, CoMP and
beamforming transmissions.

A few recent papers have focused on addressing the RAN
slicing enforcement problem from a resource allocation per-
spective. Chang et al. [17] propose a partitioning algorithm
that allocates the available RBs to each requesting MVNO by



simultaneously maximizing the percentage of satisfied MVNOs
while allocating the minimum amount of RBs. Similarly, Han
et al. [31] consider genetic algorithms to assign the available
RBs to the MVNOs such that a long-term utility is maximized.
However, [17, 31] analyze the problem considering a network
with a single BS, and thus cannot be applied in multi-cell
networks where MVNOs request different amounts of resources
on different BSs. The authors in [18, 32] identify fine-grained
RB management as a promising approach to guarantee orthog-
onality and reduce inter-MVNO interference, thus deploying
highly-efficient 5G networks. However, [18] does not provide
any algorithm to enforce slicing policies to maximize network
efficiency, while [32] does not consider interference among BSs
when allocating RBs.

To summarize, our work separates itself from existing liter-
ature on RAN resource allocation in the following aspects. We
first provide a novel formulation of the RAN slicing enforce-
ment problem (RSEP) that (i) satisfies MVNOs requests, (ii)
enforces orthogonality by reducing inter-MVNO interference,
and (iii) enables advanced communication techniques such as
CoMP and coordinated beamforming by maximizing the num-
ber of simultaneous MVNO transmissions on different BSs.
Then, we propose three algorithms that solve the RSEP with
different optimality performance and computational complex-
ity, and we show how they can be applied to virtualized LTE
networks through simulations. Finally, through a real-world
experimental testbed, we (i) demonstrate the feasibility and
effectiveness of the proposed solutions; (ii) show that our model
efficiently reduces inter-MVNO interference by (a) enforcing
orthogonality among slices and (b) increasing network through-
put by enabling intra-MVNO transmission strategies.

III. SYSTEM MODEL AND PROBLEM OVERVIEW

We consider the RAN shown in Fig. 3, consisting of a setB =
{1, 2, . . . , B} of B base stations (BSs), each associated with a
coverage area ρb, b ∈ B. Two BSs b and b′ are interfering
(or adjacent) with each other if ρb ∩ ρ′b 6= ∅. We define Y =
(yb,b′)b,b′∈B as a symmetric adjacency matrix such that yb,b = 0
for all b ∈ B, yb,b′ = 1 if BSs b and b′ interfere with each other,
and yb,b′ = 0 otherwise.

The RAN is administered by a NO, who periodically rents
to a set M = {1, 2, . . . ,M} of M MVNOs virtual RAN
slices built on top of the underlying physical network B. For
the sake of generality, we assume RAN slices are valid for
T time slots. This way, slow-changing networks (e.g., cellular
networks in rural areas during nighttime) can be modeled with
large values of T , while small values of T can be used to model
fast-changing networks (e.g., urban areas during daytime).

Similar to LTE, spectrum resources are represented as
RBs, where each RB represents the minimum spatio-temporal
scheduling unit [33]. Also, we consider an OFDMA channel ac-
cess scheme (as in downlink LTE) where RBs are organized as
a resource grid, and where NRB and T represent the number of
available subcarriers and temporal slots, respectively. Thus, the
set of available resources at each BS isR, with |R| = NRB ·T .

We explain the interaction between MVNOs and the NO
with the help of Fig. 3. First, (i) MVNO’s RAN slice requests
are collected by the NO. Then, (ii) the NO generates a slicing

profile L = (Lm,b)m∈M,b∈B whereLm,b represents the amount
of resources that the NO should allocate to MVNO m ∈M on
BS b in the time span 0 ≤ t ≤ T (i.e., RAN Slice Assignment);
and (iii) computes a slicing enforcement policy π that allocates
RBs among the MVNOs such that all MVNO’s requests are
satisfied (i.e., RAN Slice Enforcement).

This paper addresses point (iii), since (ii) has been already
extensively investigated [5, 14–16, 19–22, 24–26]. Specifically,
we show how the NO can compute an efficient slicing enforce-
ment policy π that satisfies the three requirements described
in Section I, i.e., feasibility, orthogonality and enabling of
advanced technologies.

IV. THE RAN SLICING ENFORCEMENT PROBLEM (RSEP)

For any given slicing profile L and BS b, we identify the
subset Mb ⊆ M of MVNOs that include BS b in their RAN
slice asMb = {m ∈M : Lm,b > 0}.

Let xm,b,n,t ∈ {0, 1} be the RB allocation indicator such
that xm,b,n,t = 1 if RB (n, t) ∈ R is allocated to MVNO
m, xm,b,n,t = 0 otherwise. Also, let π = (πb)b∈B be the
slicing enforcement policy, where πb = (πm,b)m∈M and πm,b
represents the set of RBs on BS b that are allocated to MVNO
m. In more detail, for any RB (n, t) ∈ R, we have that
(n, t) ∈ πm,b ⇐⇒ xm,b,n,t = 1. Hence, the set Π of all
feasible slicing enforcement policies π can be defined as:

Π = {π = (πm,b)m∈M,b∈B : |πm,b| = Lm,b ∧
πm,b ∩ πm′,b = ∅ ∀m 6= m′,m,m′ ∈M, b ∈ B} (1)

To properly formulate the RSEP, we now introduce the
concept of linked RBs.

Definition 1 (Linked RBs). A given RB (n, t) on the resource
grid is linked to MVNO m on two interfering BS b and b′ if and
only if xm,b,n,t = xm,b′,n,t = 1 and yb,b′ = 1.

Linked RBs indicate those RBs that have been assigned to the
same MVNO on adjacent BSs. Specifically, a linked RB allows
the corresponding MVNO to simultaneously access a specific
spectrum portion in the same time-slot from two different BSs.

The reason why this feature is particularly relevant to the
RSEP is threefold: (i) MVNOs can use linked RBs to enable
advanced transmission schemes (e.g., power control, beam-
forming, MIMO and CoMP transmissions) among nearby BSs;
(ii) as shown in Fig. 1, linked RBs can be used to deploy fully-
orthogonal RAN slices with no inter-MVNO interference; and
(iii) linked RBs do not generate inter-MVNO interference, thus
avoiding any need for centralized coordination or distributed
coordination among MVNOs.

It is clear that the maximization of the number of simultane-
ously linked RBs addresses the three issues identified in Section
I. Thus, we focus our attention on this approach. By leveraging
the concept of linked RBs, we define nb,b′,m as follows:

nb,b′,m = yb,b′ · |πm,b ∩ πm,b′ |, (2)

where (2) represents the number of linked RBs among
interfering BSs. It is also worth noting that the relationship
nb,b′,m = nb′,b,m always holds for all b, b′ ∈ B and m ∈M.



For each MVNO m ∈ M, the total number Nm of linked
RBs on the corresponding RAN slice under policy L is

Nm =
1

2

∑
b∈B

∑
b′ 6=b

yb,b′ · nb,b′,m, (3)

where the 1/2 factor is introduced to avoid double counting the
same RBs.

We formally define the RSEP as follows:

maximize
π∈Π

∑
m∈M

Nm (RSEP)

In a nutshell, the objective in RSEP is to compute a feasible
slicing enforcement policy π that maximizes the total number
of linked RBs while guaranteeing that the computed policy does
not violate the feasibility constraint π ∈ Π.

V. ADDRESSING THE RSEP PROBLEM

Fig. 1 shows that the formulation in Problem RSEP is partic-
ularly well-suited for RAN slicing problems. This is because it
satisfies MVNOs requirements in terms of number of obtained
RBs, helps orthogonality among slices through the reduction
of inter-MVNO interference, and enables coordination-based
communications such as CoMP, JT and beamforming.

To solve Problem RSEP, we need to compute a slicing
enforcement policy by exploring the feasible set Π. Given the
formulation in Problem RSEP does not in itself provide any
intuitions on how a solution can be computed. For this reason,
we (i) reformulate Problem RSEP by using the RB allocation
indicators introduced in Section IV; (ii) show that the problem
is NP-hard; and (iii) present a number of algorithms to compute
both optimal and sub-optimal solutions to Problem RSEP.

A. Optimal Solution

By using the definition of the RB allocation indicator xm,b,n,t
and from (1), we have that (3) can be reformulated as

Nm =
1

2

T∑
t=1

NRB∑
n=1

∑
b∈B

∑
b′ 6=b, b′∈B

yb,b′xm,b,n,txm,b′,n,t. (4)

Let us consider the matrices B = Y ⊗ INRB ·T and Q =
IM ⊗ B, where ⊗ stands for Kronecker product and Ik is the
k × k identity matrix. From (4), it can be easily shown that∑
m∈MNm = 1

2x
>Qx. Accordingly, Problem RSEP can be

reformulated as

maximize
x

1

2
x>Qx (RSEP-QP)

subject to
T∑
t=1

NRB∑
n=1

xm,b,n,t = Lm,b, ∀b ∈ B, ∀m∈M (C1)∑
m∈M

xm,b,n,t ≤ 1, ∀(n, t) ∈ R, ∀b ∈ B (C2)

xm,b,n,t∈{0, 1},∀(n, t)∈R,∀b∈B,∀m∈M (C3)

where x = (xm,b,n,t)m,b,n,t can be represented as a
MBNRBT × 1 column array.

In Problem RSEP-QP, Constraint (C1) ensures that all
MVNOs receive the assigned number of RBs, while Constraint
(C2) guarantees that each RB is allocated to one MVNO only.

Finally, Constraint (C3) expresses the boolean nature of the
RB allocation indicator. Problems RSEP and RSEP-QP are
equivalent, as the latter is a reformulation of the former in terms
of the RB allocation indicator. However, this new formulation
shows that the RSEP can be modeled as a 0-1 (or binary)
Quadratic Programming (QP) problem. We prove in Theorem
1 that Problem RSEP-QP is NP-Hard.

Theorem 1. Problem RSEP-QP is NP-hard.

Proof: It is sufficient to show that the matrix Q is in-
definite, i.e., it admits both positive and negative eigenvalues.
Indeed, it is well-known [34, 35] that even real-valued non-
binary QP problems are NP-hard when Q is indefinite.

From the definition of B and Y, matrix Q has all zero entries
in the main diagonal. Accordingly, Q is a zero-diagonal (or
hollow) symmetric matrix. Let λ be the set of eigenvalues of
Q. Notice that

∑
λi∈λ λi = Tr{Q}, and Tr{Q} = 0 in our

case. Thus, all the eigenvalues of Q must sum up to zero,
meaning that either all eigenvalues are equal to zero, or Q has
both positive and negative eigenvalues. Thanks to the symmetry
of Q, we can exclude the former case since it would imply
that Q is the zero-matrix (i.e., there is no interference among
BSs and yb,b′ = 0 for all b, b′ ∈ B). Therefore, Q must have
both positive and negative eigenvalues, i.e., Q is indefinite. This
proves the theorem.

Since Problem RSEP-QP is NP-hard, in Section V-B we
leverage linear relaxation and the concept of equivalence to
design a reduced-complexity solution to Problem RSEP-QP,
while in Section V-C we design a heuristic algorithm that can
compute a sub-optimal solution to Problem RSEP-QP with
polynomial complexity.

B. Approximated Solution

Let V = M ·B ·NRB · T , and let us consider the following
transformed problem

maximize
x

1

2
x>(Q + 2λIV )x− λe>x (RSEP-EQ)

subject to (C1), (C2)
0≤xm,b,n,t≤1,∀(n, t)∈R,∀b∈B,∀m∈M (C4)

where λ ∈ R is a real-valued parameter whose relevance to
Problem RSEP-EQ will be explained in Theorem 2, and e> =
(1, 1, . . . , 1). The following theorem holds.

Theorem 2. There exists λ ∈ R such that Problem RSEP-EQ
is equivalent to Problem RSEP-QP. Also, let z∗ be the largest
(positive) eigenvalue of Q. For any λ ≥ −z∗, Problem RSEP-
EQ is a quadratic convex problem over the unit hypercube.

Proof: Notice that Q contains only 0-1 entries and
xm,b,n,t ≤ 1, which implies that x>Qx is always bounded
and finite. Also, x>Qx has continuous and bounded first-
order derivatives over the unit hypercube, i.e., it is Lipschitz-
continuous in any open set that contains the unit hypercube.
From [36, Th. 3.1], it must exist λ0 ∈ R such that ∀λ ≥ λ0

Problems RSEP-EQ and RSEP-QP are equivalent. Intuitively,
the utility function in Problem RSEP-EQ introduces the term
λx>(e − x) which generates a cost, or a penalty, proportional



to λ when constraint xm,b,n,t ∈ {0, 1} is not satisfied. Accord-
ingly, the binary constraint in Constraint (C3) can be dropped
and relaxed with the unit hypercube constraint 0 ≤ xm,b,n,t ≤
1. Recall that Q matrix admits both negative and positive
eigenvalues. Accordingly, let z be the set of eigenvalues of Q
and z∗ = max{z1, z2, . . . , z|z|}, we can choose λ ≥ z∗ to
show that the matrix Q + 2λIV is positive semi-definite. Thus,
Problem RSEP-EQ is convex, which proves the Theorem.

Remarks. Theorem 2 shows that it is possible to relax the
binary constraint of Problem RSEP-QP by replacing it with a
penalty term. This produces an equivalent convex QP problem
where binary variables xm,b,n,t are replaced with continuous
ones through a linear relaxation. In general, local and global
solutions of convex quadratic maximization problems (and the
corresponding concave quadratic minimization problems) lie
on the vertices of the feasibility set [37], thus making Problem
RSEP-EQ easier to solve when compared to Problem RSEP-
QP. In some cases, Problem RSEP-EQ might still require expo-
nential time with respect to the number of vertices. Approaches
that restrict the search space to the vertices of the feasibility set,
such as cutting plane and extreme point ranking methods [37],
can be used to efficiently solve Problem RSEP-EQ.

C. Heuristic Solution

Although Problem RSEP-EQ has lower complexity than
Problem RSEP-QP, it is still hard to find a solution as the prob-
lem grows in size. Therefore, we design a polynomial solution
to Problem RSEP-QP by using a heuristic approach. The key
idea is to generate a solution that provides good performance
while achieving low computational complexity. Given Problem
RSEP-QP maximizes the number of shared RBs, we can al-
locate as many linked RBs as possible to those MVNOs that
request the highest amount of RBs on multiple interfering BSs.
Indeed, MVNOs that request the greatest number of resources
on different interfering BSs are also expected to produce a high
number of linked RBs. Accordingly, for each MVNO m we
define the linking index lm as

lm =
∑
b∈B

∑
b′ 6=b

min{Lm,b, Lm,b′}yb,b′ (5)

The linking index is used to sequentially allocate RBs to
those MVNOs with the highest linking index. We refer to this
procedure as the Most Linked First (MLF) procedure, which is
illustrated in Algorithm 1 and works as follows:

1) we generate setMG = M for all m, k ∈ MG s.t. m <
k, then lm ≥ lk;

2) we start allocating RBs on all BSs in sequential order to
the first MVNO in MG, i.e., the MVNO whose linking
index lm is the highest among all MVNOs inM. When
all RBs are allocated to the considered MVNO, say m′,
we remove it fromMG and we set lm′ = 0;

3) if MG = ∅, we stop. Otherwise, we re-execute Step 2
until all MVNOs are assigned to the required RBs.

Line 4 requires to compute (5) which has complex-
ity O(MB2), while Line 5 has complexity O(M logM).
The while loop at Line 6 has complexity O(NRBBM).
Thus, the complexity of MLF is O(C), where C =
max{MB2,M logM,NRB ·B ·M}.

Algorithm 1 RSEP-MLF
1: Input B;M;Y;L;
2: Output A MLF RBs allocation xG = (xGm,b,n,t)m,b,n,t;
3: Set xGm,b,n,t = 0 for all m ∈M, b ∈ B, (n, t) ∈ R;
4: Compute the linking index l = (lm)m∈M;
5: MG ← SortM by lm in decreasing order;
6: whileMG 6= ∅ do
7: for each BS b ∈ B do
8: Update xGm,b,n,t by allocating LMG(1),b subsequent

RBs to MVNO m on BS b;
9: end for

10: MG ←MG \ {MG(1)};
11: end while

D. Speeding-up the execution of RSEP-QP and RSEP-EQ

Although Problems RSEP-QP and RSEP-EQ have exponen-
tial complexity, two intuitions help reduce their complexity by
leveraging specific structural properties of the RSEP.

1) Sparsity: Let xOPT be an optimal solution to either Prob-
lem RSEP-QP or RSEP-EQ. If Lm,b = 0 for a given MVNO
m on BS b, then xOPTm,b,n,t = 0 for all n and t. Furthermore,
we notice that the complexity of many optimization problems
strongly depends on the number of non-zero entries (i.e., the
sparsity) of the Q matrix, as pointed out in [38]. Thus we
leverage the particular structure of our problem to reduce the
complexity of the two problems by introducing two transfor-
mations. Specifically, let m′ and b′ such that Lm′,b′ = 0, for
both RSEP-QP and RSEP-EQ we generate a reduced matrix Q̃
where we set Qm′,b′,n,t = 0 for all (n, t) ∈ R. For RSEP-QP,
it suffices to replace the Q matrix with Q̃. Instead, to keep the
equivalence between RSEP-QP and RSEP-EQ, the objective
function of RSEP-EQ should be reformulated as

1

2
x>(Q̃ + 2λĨV )x− λ (6)

where ĨV is the identity matrix where we set to zero those
entries corresponding to the 2-tuple (m′, b′).

Note that the two above transformations generate equivalent
problems to RSEP-QP and RSEP-EQ and do not impact the
optimality of the computed solutions. In fact, Constraint (C1)
requires

∑T
t=1

∑NRB
n=1 xm′,b′,n,t = 0 when Lm′,b′ = 0. Since

xm′,b′,n,t ∈ {0, 1}, we have that xm′,b′,n,t = 0 for all n
and t associated to the 2-tuple (m′, b′). That is, at the optimal
solution, xm′,b′,n,t = 0 independently of the value of qm′,b′,n,t.

2) RB Aggregation: Let K = GCD(L) be the greatest
common divisor (GCD) among all of the elements in the
L matrix. We show that Problems RSEP-QP and RSEP-EQ
are equivalent to solve the same problems with a scaled RB
grid, when given conditions on K, T and NRB are satisfied.
Specifically, ifK > 1 and either the numberNRB of RBs or the
number T of time slots are proportional toK, the available RBs
can be aggregated in groups of K RBs so that each group can
be seen as a single aggreagated RB. We refer to such a property
as aggregability of the RSEP. Definition follows below.

Definition 2 (Aggregable RSEP). The RSEP is said to be
aggregable if NRB (mod K) = 0 or T (mod K) = 0, where
K=GCD(L)>1 and A(mod B) is the A modulo B operator.



In the first case, we scale the number of RBs as ÑRB =
NRB/K. In the second case, we scale the number of time slots
as T̃ = T/K. That is, for each BS b ∈ B, the setRb of available
RBs at b is replaced with an aggregated version of cardinality
|R̃b| = NRBT/K where K RBs are grouped together to create
a single RB. We refer to this low-dimensional RSEP as the
aggregated RSEP.

Theorem 3. Let the RSEP be aggregable, it is possible to com-
pute an optimal solution to the RSEP by solving the aggregated
RSEP.

Proof: Let Z = NRBT , K > 1 be the GCD of L, P be
the original RSEP problem and P̃ be the aggregated RSEP with
T̃ = T/K. The proof for the case where we aggregate with
respect to ÑRB = NRB/K follows the same steps. First, note
that problem P is shift invariant with respect to the indexing of
n and t. Our statement can easily be proven by simply noting
that for any given optimal solution x∗, the solution x with
xm,r,1,t = x∗m,r,NRB ,t and xm,r,NRB ,t = x∗m,r,1,t for all m,
r and t is clearly still optimal as it produces the same number
of linked RBs as x∗. In general, we can extend this result to any
reshape procedure of the RB setR that maintains the cardinality
ofR constant and equal to Z. With this feature at hand, we will
show that we can reduce the cardinality ofR by a factor K and
still achieve equivalence and optimality.

Let X ∈ RNRB T̃×K and X̃ ∈ RNRB T̃×1 be the feasibility
sets of P and P̃ , respectively. Also, let fZ(x) : X → N and
fZ/K(x) : X̃ → N be the objective functions of problem P and
P̃ , respectively. The optimal solution to P is denoted as x∗ ∈
X , while the optimal solution to P̃ is denoted as x̃∗ ∈ X̃ . Due
to the optimality of x∗ and x̃∗, we have that fZ(x∗) ≥ fZ(x)
for all x ∈ X , and fZ/K(x̃∗) ≥ fZ/K(x̃) for all x̃ ∈ X̃ . Let
us define x̃∗A ∈ X be the solution to P generated by expanding
the aggregated optimal solution x̃∗ to P̃ . Let R ∈ RNRB T̃×K ,
x̃∗A = (x̃∗Am,b,τ,k)m,b,τ,k is generated by setting x̃∗Am,b,τ,k =
x̃∗m,b,τ for all k = 1, ...,K, m ∈ M and b ∈ B. Intuitively,
we are replicating the matrix x̃∗ by adding K − 1 rows whose
entries are identical to those in x̃∗.

We will now prove that P and P̃ are equivalent by con-
tradiction. Accordingly, we will negate our hypotesis and we
will assume that the two problems are not equivalent, i.e.,
fZ(x∗) > fZ(x̃∗A).

Let g(x) : X → N be defined as g(x) = K−1f(x).
Intuitively, if we replace the objective function f(x) of P
with g(x), we obtain the same problem where each linked RB
gives a reward equal to K−1 (f(x) instead provides a unitary
reward for each linked RB). By construction of x̃∗A, we have
fZ/K(x̃∗) = K−1fZ(x̃∗A) = g(x̃∗A). From the assumption
fZ(x∗) > fZ(x̃∗A), we have that

g(x∗)=K−1fZ(x∗)>K−1fZ(x̃∗A)=g(x̃∗A)=fZ/K(x̃∗) (7)

which states that g(x∗) > fZ/K(x̃∗).
To show that this last statement is a contradiction to our

hypothesis (i.e., x̃∗ is optimal for P̃ ), we need to show that
there always exist a mapping that transforms any solution in
X to an equivalent solution in X̃ . That is, we need to find a
function h(x) : X → X̃ such that h(x) = x̂ ∈ X̃ that can be
transformed into x̂A such that fZ/K(x̂) = K−1fZ(x̂A).

In general, such a mapping is not unique, since any optimal
solution in X and X̃ is shift invariant. However, in Appendix
A we present an easy mapping h(x) = x̃ that, starting from an
optimal solution x ∈ X , always generates an equivalent optimal
solution x̃ ∈ X̃ such that fZ/K(x̃) = K−1fZ(x).

The existence of the above mapping implies that x∗R = h(x∗)
satisfies fZ/K(x∗R) = K−1fZ(x∗) = g(x∗), which is clearly
a contradiction. In fact, from (7) we have that fZ/K(x∗R) =
g(x∗) > fZ/K(x̃∗), which implies the existence of a solution
x∗R that contradicts the optimality of x̃∗ over X̃ . It follows that
fZ/K(x̃∗) = K−1fZ(x∗) must hold. Hence, any solution x̃∗

to the aggregated RSEP can be expanded to obtain x̃∗A that is
optimal for the original RSEP. This concludes the proof.

VI. NUMERICAL ANALYSIS

We now assess the performance of the algorithms proposed
in Section V. To this end, we simulate an LTE frequency
division duplexing (FDD) system with 1.4 MHz channel band-
width, which is divided into 72 subcarriers organized into
NRB = 6 physical resource blocks (PRBs). Each PRB rep-
resents the minimum scheduling unit and consists of 12 subcar-
riers and 14 symbols. Time is divided into discrete time slots
called sub-frames, the duration of each sub-frame equals the
duration of one PRB and NSF = 10 sub-frames constitute a
frame. Let NF ∈ N be the number of frames within the slicing
enforcing window. It follows that T = NF ·NSF .

Unless stated otherwise, we assume that both the interference
matrix Y and the slicing profile matrix L are generated at
random at each simulation run. Results were averaged over
1000 independent simulation runs.

A. Convergence Time Analysis

Fig. 4 shows the convergence time of RSEP-QP, RSEP-EQ
and RSEP-MLF as a function of the number M of MVNOs
when B = 5 and NF = 2. As expected, the convergence time
increases as the number of MVNOs in the network increases.
Moreover, the convergence time of RSEP-QP is considerably
higher than the one of RSEP-EQ and RSEP-MLF. Fig. 4 also
shows the impact of the sparsity and RB aggregation mecha-
nisms in Sections V-D1 and V-D2 on the overall convergence
time. As it can be observed, the techniques presented in Section
V-D can effectively reduce the computation time of all the three
problems. Moreover, we show the RB aggregation produces the
best performance improvement in terms of convergence time.

We point out that RSEP-QP requires approximately 100s to
compute an optimal solution when M = 10 and B = 5.
On the contrary, RSEP-EQ only requires 1s while RSEP-MLF
computes the solution in less then a millisecond.

Interestingly, Fig. 4 reveals that the reduction in terms of
convergence time brought by sparsity can not be appreciated
in small-scale scenarios. For this reason, we have further inves-
tigated the impact of sparsity in large-scale networks and the
obtained results are presented in Fig. 5. It is shown that sparsity
can effectively reduce the computation time by several tens of
seconds, and the gain increases as both M and B increase.
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Fig. 4. Convergence time (s) of the three proposed solutions as a function of
M considering different computational time reduction techniques.

B. Optimality-gap Analysis
Another crucial aspect is the optimality-gap between RSEP-

QP and RSEP-EQ/RSEP-MLF. Although Theorem 2 shows
that (under some conditions) Problem RSEP-EQ is equivalent
to Problem RSEP-QP, we can not guarantee that the solution
computed by RSEP-EQ is a global optimum. Indeed, the solver
might get stuck in one of the local maximizers, thus effectively
preventing the computation of an actual global maximizer.
Thus, in Fig. 6 we investigate the optimality-gap of RSEP-
EQ and RSEP-MLF with respect to an optimal solution com-
puted by RSEP-QP. In other words, the closer to zero is the
optimality-gap, the closer to optimality the solution is.
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Fig. 6 shows that the optimality-gap increases as the number
of MVNOs and BSs in the network increases. Intuitively, this
is because the feasibility set increases as M and/or B increase.
Given that local maximizers of RSEP-EQ lie on the vertices of
the feasibility set, greater values of M and B produce a greater
number of local maximizers, thus the probability of getting
stuck in a local maximizer increases. Notice that although
RSEP-MLF is negligibly affected by the number of BSs B,
it achieves poor performance if compared to RSEP-EQ. Figs.
6 and 4 also indicate that RSEP-EQ represents an effective
solution to the RSEP that is both near-optimal and computed
in few seconds.

C. Linked RBs Analysis
Fig. 7 shows the impact of M and B on the total number of

linked RBs of the system when NF = 10 and T = 100. As

expected, RSEP-EQ always performs better than RSEP-MLF
in terms of number of linked RBs. Moreover, Fig. 7 illustrates
that larger values ofB produce a greater number of linked RBs.
Conversely, the number of linked RBs decrease as the number
M of MNVOs increase. This is because, when more MVNOs
include the same BS to their slices, it is harder to guarantee that
all MVNOs will receive the corresponding amount of RBs joint
with a large number of linked RBs.

VII. EXPERIMENTAL ANALYSIS

In this section, we describe our testbed analysis and the
results obtained through experimental evaluation. First, we
describe in Section VII-A our experimental testbed and the sce-
nario considered. Finally, we discuss the experimental results
in Section VII-B.

A. Experimental Testbed and Network Scenarios

To evaluate the performance of our algorithms, we have used
an orthogonal frequency division multiple access (OFDMA)
system as in LTE [39]. In OFDMA, time and frequency are
divided into RBs, where each RB has time duration equal to the
duration of an OFDMA frame, which spans K subcarriers split
into ∆T slots. Each of these slots are assigned to one MVNO
according to the outcome of the slicing enforcement algorithm,
who in turn can decide to assign subcarriers to MUs according
to its own internal resource allocation and scheduling policy.
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We set up a testbed of 8 USRP software-defined radio for our
experiments.Two USRP X310 act as BSs, 6 USRP N210 are
used to implement MUs and all of them run GNU Radio. The
USRP radios were deployed as shown in Figure 8, where we
show that two groups of three N210s are associated with each
BS. The BSs were synchronized in time and phase by using an
Octoclock clock distributor by Ettus Research.

B. Experimental Results

Our experiments were targeted to evaluate two critical per-
formance parameters:

1) the effectiveness of our slicing enforcement algorithms
in assigning the spectrum resources (i.e., the RBs) to the
MVNOs according to the slicing policy;

2) the performance (i.e., total network throughput) of RSEP-
QP as opposed to sub-optimal algorithms.

To address point 1), we consider a network with three
MVNOs and 6 MUs, where each MU is associated with a dif-
ferent MVNO in each BS (e.g., U11 is associated with MVNO



1 and BS1, while U23 with MVNO 3 and BS2). We consider the
case where the two BSs enforce the following slicing policies
on the three MVNOs, which change every T = 300s, by using
the RSEP-QP algorithm.

1) BS1: {70, 30, 0}%; {25, 25, 50}%; {30, 40, 30}%.
2) BS2: {25, 25, 50}%; {30, 40, 30}%; {70, 30, 0}%.

Fig. 9. Throughput per MU as a function of time and MUs.

Figure 9 depicts the throughput experienced by each MU as a
function of time at BS1 and BS2, averaged over 10 repetitions.
The sharp change in throughput corresponding to different
slicing policies in Figure 9 indicates that our RSEP-QP slicing
enforcement algorithm indeed assigns to each MVNO (and
therefore, each MU) a number of RBs that is coherent to what
expressed in the slicing policy.
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In addressing point 2), we consider the same network sce-
nario as in 1). However, to remark the difference between
the optimum and the sub-optimal algorithms, we consider 9
MVNOs instead of 3. The MVNOs have been assigned the
following slicing policy at the two BSs:

1) BS1: {7, 10, 18, 7, 3, 6, 23, 14, 12}%;
2) BS2: {5, 3, 16, 13, 10, 5, 30, 7, 11}%.
Furthermore, we consider the following IBSPC policy: when

two MVNOs have matching RBs at the two BSs, we compute
a power control policy that reduce the transmission power to
keep the mutual interference below a fixed threshold.

Figure 10 shows the total network throughput as a function
of time, for the RSEP-QP, RSEP-MLF and Random policies,
averaged over 100 repetitions. The results in Figure 10 indicate
that (i) as remarked in the Introduction, the throughput increase
by using IBSPC in conjunction to an optimal slicing enforce-
ment algorithm can help increase the total network throughput
dramatically with respect to approaches that assign RBs to
MVNOs in sub-optimal fashion. Our experiments confirm that
RSEP-QP doubles the throughput with respect to the Random
baseline, and that our RSEP-MLF algorithm approximates well
the RSEP-QP algorithm. These results are a consequence of the
fact that the RBs shared by the MVNOs are respectively 96,

79, and 13 in the case of RSEP-QP, RSEP-MLF and Random,
therefore, the opportunity of IBSPC is significantly higher in
the former two.

VIII. CONCLUSIONS

In this paper, we have investigated the challenging and timely
problem of radio access network (RAN) slicing enforcement
in 5G networks. First, we have formulated the resource slic-
ing enforcement problem (RSEP) and shown its NP-hardness.
Then, we have proposed two approximation algorithms that
render the problem tractable and scalable as the problem in-
creases in complexity. Finally, we have evaluated the algorithms
through extensive simulation and experimental analysis on a
real-world testbed composed by 8 software-defined radios ang
GNU Radio. Results conclude that our algorithms are scalable
and provide near-optimal performance. Moreover, our solutions
effectively enforce RAN slicing policies by satisfying MVNOs
requirements and by reducing inter-MVNO interference.
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IX. APPENDIX

A. Aggregation map from X to X̃
Let us consider the reshaped RB grid R ∈ RNRBT×1 and

let us define the RBAM σ = (σb)b∈B where σb(x∗) =
(σb,τ )τ∈R. Henceforth, b and τ will represent rows and
columns of σ, respectively. For any given optimal solution
x ∈ X , we build a map between each RB inR and the MVNO
that has been assigned with that RB on BS b. Let Mb,τ (x∗) be
the MVNO that RB τ has been assigned to, i.e., the MVNO m
such that xm,b,τ = 1. Accordingly, we set σb,τ = Mb,τ (x∗).

Let us now introduce some terminology for the sake of
simplicity. Two columns τ1 and τ2 are said to be coherently
swapped when all their corresponding entries σb,τ1 are replaced
with those of σb,τ2 and vice versa for all b ∈ B. Two columns
are partially swapped when only a portion B̂ ⊂ B of entries
is replaced among two columns. Two entries σb1,τ and σb2,τ
are linked if Mb1,τ (x) = Mb2,τ (x) and yb1,b2 = 1. Finally,
we say that K adjacent entries σb,τ1 , ..., σb,τK are paired if
Mb,τ1(x) = Mb,τ2(x) = · · · = Mb,τM (x), they are said to
be unpaired otherwise.

The algorithm works as follow. First, if any K columns of σ
are identical, i.e., all entries are paired, we remove them from σ
and add one out of those K identical columns to an aggregated
RBAM σA ∈ RNRBT/K×1. Then, we take the following steps:

1) We select the row b0 of σ with the smallest number of
distinct MVNOs and we move it to the lowest row;

2) We update σ by ordering row b0 in MVNO identifier
order. This operation (i) creates ordered groups of K
entries; and (ii) preserves the optimality of the solution
as all columns are coherently swapped;

3) If all entries in the RBAM σ have been paired, we stop
the algorithm;

4) If anyK columns ofσ are identical, we remove them from
σ and we include one of them to σA;

5) We select the row bn (among the rows above b0) that
shares the highest number of links with b0, and we move
it above b0;

6) If all the entries in bn are paired, we go to 7); otherwise,
we find K unpaired entries and we generate a partial
swap of bn and the upper rows such that i) the number
of links remains the same1; and ii) the K entries are
paired. Since we are forcing the number of links to be the
same, any partial swap generated in this step maintains
the optimality of the solution. Although the partial swap
might change the number of links per tenant, it does
not changes the total number of links. Thus, the solution
generated by the partial swap and the initial optimal
solution are equivalent;

7) We set b0 = bn and go to 3).
Upon termination, the algorithm creates the aggregated

RBAM σA that is then transformed into a reshaped one σR

by replicating its columns exactly K − 1 times. All the entries
in the reshaped RBAM σR are paired and the total number of
links is equal to the original optimal RBAM σ. It is easy to

1Note that the initial unpaired solution is optimal, and any partial swap
produces a number of links that is at most as high as that of the initial solution.



note that both RBAMs generate the same number of links, i.e.,
the aggregation mapping generates an aggregated RBAM that
is optimal for the RSEP.


