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Abstract—This paper investigates the advantages and design
challenges of leveraging Unmanned Aerial Vehicles (UAVs) to
deploy 4G/5G femto- and pico-cells to provide quality-aware user
service and improve network performance. In order to do so, we
combine UAVs dashing flight capabilities with Software-defined
Radios (SDRs) flexibility and devise the concept of self-optimizing
UAV Base Stations (UABSs). The proposed framework allows
for on-the-fly drone repositioning based on rigorous optimization
techniques using real-time network metrics to enhance users’
service. This makes it possible to offload the traditional cellular
infrastructure, or to mend its temporary failure, by deploying
UABSs in areas of interest. Cellular connectivity is, then, provided
to mobile subscribers through the LTE-compliant OpenAirInter-
face software interfaced with the on-drone SDR.

We first describe the UABS design challenges and approaches.
Then, we give details on the devised optimization algorithm and
its main requirements. Finally, we illustrate a prototype imple-
mentation of the proposed UABS that leverages an SDR device
and a PX4 flight controller, and test its effectiveness. Experimental
results demonstrate that UABSs are able to autonomously reposi-
tion themselves based on cellular network metrics and to improve
network performance.

Index Terms—Software-defined Networking, 5G, UAV Net-
works, Optimization.

I. INTRODUCTION

The last few years have been seeing Unmanned Aerial Vehi-

cles (UAVs) opening new branches of research. Their inherent

flexibility and versatility, in fact, make it possible to easily

deploy them on-demand to improve existing infrastructure

capabilities or to mend its temporary failure. Specifically, the

combination of UAVs and Software-defined Radios (SDRs)

allows the creation of flying cellular Base Stations (BSs) able

to enhance network connectivity. In this way, pico- and femto-

cells can be deployed on-demand to improve the service sup-

plied by inflexible cellular macro-cells (e.g., offloading them)

or to provide connectivity to users in remote areas.

The vast majority of the existing work on drone control

solutions focuses on autonomous drone deployments based

on external sources of information, such as GPS positioning

systems or 3D maps of the surrounding area. However, these

solutions are tightly bound to the availability of these exter-

nal resources (e.g., GPS signals), and often increase system

overhead, latency and cost. Other approaches, relying on UAV

measurements and sensor readings, thus, may be preferable

in time-critical applications or resource-constrained environ-

ments (e.g., in which external sources of information are not

readily available).

In this paper, we propose a quality-aware aerial-to-ground

cellular framework involving a UAV operating as standalone

base station and core network. These Unmanned Aerial Base

Stations (UABSs) are used to extend an existing terrestrial

infrastructure or to compensate for temporary cell overload or

outage. The developed model, relying on real-time Quality of

Service (QoS) measurements, either directly derived by the

UABS or sent by mobile users as feedback, provides a fast

gradient-based algorithm for online drone position optimiza-

tion. Unlike most of the existing solutions, our approach aims

at jump-starting the UABS deployment and positioning without

relying on any source of information external to the UABS-

User Equipments (UEs) environment.

We prototyped the UABS, using an off-the-shelf quadrotor

UAV equipped with an open-source PX4 flight controller and

general purpose compute board connected to an SDR. The

compute board runs OpenAirInterface, implementing standard-

compliant LTE and 5G protocol stacks, and jointly serves as

cellular base station and core network.

Several challenges arise while devising such system, among

which: (i) Improving the UAV capabilities with a standard-

compliant cellular communication system; (ii) designing opti-

mization algorithms tailored to resource-limited UAV compute

boards and that rely on a limited amount of information based

on BS-UEs parameters only; (iii) dealing with the UAV lim-

ited power capabilities, and (iv) carefully choosing hardware

equipment not exceeding the drone weight payload. While ad-

dressing these challenges, we offer the following contributions:

We (i) design, prototype and test a 5G-compliant Unmanned

Aerial Base Station; (ii) provide an open-source framework

for autonomous positioning of UABSs, and (iii) propose an

algorithm for real-time UABS repositioning based on network

parameters able to effectively optimize network performance.

The rest of this paper is organized as follows. In Section II,

we discuss the related literature work regarding the use of

UAVs in cellular networks. In Section III, we illustrate the

UABS system design, while in Section IV we present our

framework. In Section V and Section VI, we describe our

UABS prototype, and experimentally evaluate its performance.

Finally, Section VII briefly discusses some key points emerged

during this work, while Section VIII concludes our work.



II. RELATED WORK

The use of UAVs to provide and strengthen mobile connec-

tivity opens a rather unexplored branch of research. Zeng et al.

provide an overview of the features, and introduce key design

aspects of UAV-based wireless communication systems in [1].

Works considering coverage analysis in specific environments

include those of Nguyen et al. [2], and Greenberg and Levy [3]

with rural and urban areas, respectively.

Multiple approaches exist for drone flight and positioning

in aerial networks. De Silva and Rajasinghege precompute

distances between a UAV and points of interests to reduce

the flying path in ad-hoc UAV networks [4], while Cheng et

al. optimize UAV trajectories whilst offloading traffic among

adjacent BSs [5]. Wang et al. present a 2-steps UAV positioning

strategy which minimizes the number of required UAVs and

their position using centralized and distributed approaches,

respectively [6]. Kalantari et al. consider multiple centralized

approaches based on the backhaul link throughput to optimize

the position of a drone-BS in [7], while Dixon and Frew

describe a least-squares gradient-based optimization algorithm

for UAV relays in 802.11b/g networks in [8]. Chakareski et al.

provide a theoretical framework to efficiently find coverage ra-

dius, and perform energy efficient radio resource management

for UAV-assisted mmWave cellular networks [9]. Gangula et

al., instead, deal with an optimization framework for a UAV-

mounted LTE relay [10]. Similar to our approach, the UAV

position is computed maximizing the downlink throughput of

mobile subscribers but using users GPS locations and a 3D map

of the surrounding environment, instead.

Other works leverage UAVs to deploy, establish, character-

ize, and optimize network connectivity. For instance, Ladosz

et al. aim at maintaining network connectivity through UAV

relays [11], while Zhan et al. propose an algorithm to optimize

link quality between ground stations and relays by controlling

the UAV heading angle [12]. Gapeyenko et al. mathematically

investigate mmWave spectrum phenomena during 5G back-

haul operations for UAV-based relays [13]. Bertizzolo et al.,

instead, experimentally evaluate the benefits of location-aided

mmWave backhaul link management for UAV-based mobile

cells [14]. Lyu et al. minimize the number of UAVs needed

to cover an area of interest [15], while Iellamo et al. introduce

clustering algorithms to maximize UAVs capacity boost [16].

Finally, video-streaming QoS-based drone positioning is

investigated in [17], while UAVs for disaster scenarios are

evaluated theoretically by Deruyck et al. in [18], and experi-

mentally by Ferranti et al. in [19].

III. SYSTEM DESIGN

While the majority of cellular network implementations

remains proprietary, providing an open-source UABS plat-

form represents the main focus of this work. To this purpose,

the OpenAirInterface (OAI) software, that interfaces with a

lightweight SDR mounted on the drone, is leveraged for a

standard-compliant cellular base station, while the PX4 flight

controller enables smooth UAV operations.

A. Mobile connectivity

We adopt OpenAirInterface in order to provide cellular

connectivity to ground users [20]. This is an open-source ex-

perimental software suite providing standard compliant imple-

mentations of 4G and 5G networks. Specifically, it includes a

Radio Access Network (OAI-RAN) with LTE and 5G NR base

stations, as well as a Core Network (OAI-CN) implementation.

The Core Network features services such as Mobile Manage-

ment Entity (MME), Home Subscriber Server (HSS), Serving

Gateway (SWG), and Packet Data Network Gateway (PGW).

UEs are equipped with programmable SIM cards subscribed to

OAI-CN that allow them to swiftly attach to the UABS, which

provides them IP connectivity.

Fig. 1 shows a high-level representation of the proposed

architecture. It is worth noting that the UABS embeds all the

main functionalities of 4G/5G protocol stacks, thus making our

solution compliant to the 3GPP guidelines and compatible with

the existing cellular infrastructure.

Fig. 1: High-level UE and OAI-based UABS protocol stacks.

B. Flight control

The main component governing the UAV movement is the

Flight Controller Unit (FCU) that allows to operate the drone

either through a remote controller or ground station commands.

Moreover, it enables autonomous flight capabilities, such as the

one considered in this work, by supporting advanced flight al-

gorithms. We use the PX4 Flight controller [21] due to its high

modularity and extensibility both in terms of hardware and

software. The communication protocol employed by the FCU,

instead, is the MAVLink messaging protocol [22]. This follows

a hybrid publish-subscribe and point-to-point scheme in which

data streams are sent (published) as topics relative to distinct

sub-protocols (e.g., mission protocol, parameter protocol, etc.)

specific for different aspects of the drone management.

IV. AUTONOMOUS POSITIONING FRAMEWORK

In this section, we describe the designed optimization frame-

work together with the main functional blocks to develop and

extend aerial mobile Heterogeneous Networks (HetNets).



Let us recall some of our system requirements: (i) All the

computations need to be performed by the UABS on-board

computer; (ii) the UABS optimization problem needs to be

solved only using parameters and directives belonging to the

UABS-UE system (i.e., without using any external source of

information), and (iii) the framework deployment overhead

needs to be negligible. The first aspect challenges the overall

framework to be executed within a memory-, computational-

and power-constrained system, such as that typical of com-

mercial UAVs. The second and third ones, instead, force us to

fine-tune the UABS positioning without using any third-party

function. This also allows us to maintain full control of our

system.

A. Placement Algorithm

The placement algorithm used in our framework is a variant

of the Simultaneous Perturbation Stochastic Approximation

method (SPSA) [23]. This is a greedy gradient-based algorithm

that does not require full-knowledge of the optimization func-

tion gradient. In fact, this algorithm manages to approximate

the underlying gradient by using only few objective function

measurements regardless of the problem size. This feature

and the algorithm’s ability to deal with noise-corrupted envi-

ronments make it particularly suitable for UAV applications.

Specifically, during each algorithm iteration the next position

of the UAV is computed by using the current one and its

gradient function value as follows:

θk+1 = θk + ak g(θk), (1)

where k is the current algorithm iteration and θk represents the

UAV position. The value the gradient of the objective function

assumes in θk is given by g(θk), while ak is a proportionality

constant. The gradient estimation is computed as

ĝk(θk)j =
L(θk + ck∆k)−L(θk−ck∆k)

2ck(∆kj
)

∀j ∈ [1, p], (2)

where L is the measured objective function, j is the con-

sidered dimension, while p is the number of involved spa-

tial dimensions. The product ck∆k denotes the displacement

from the current position, where ck is a small positive num-

ber decreasing with the number of iterations, while ∆k =
(∆k1

,∆k2
, ...,∆kp

)T is the perturbation vector.

It is worth noting that this algorithm can estimate function

gradients by taking in input few measurements performed

during each algorithm iteration only, regardless of the objec-

tive function size. This is particularly useful when dealing

with noise-affected and instantaneous network parameters for

which a corresponding gradient function cannot be computed

in polynomial time. Furthermore, being our algorithm able to

effectively guarantee a good trade-off between convergence

time and required measurements, it is particularly suitable for

UAV scenarios. In fact, although being a greedy approach, it

is more likely to converge to the global optimum than classic

gradient descent-based algorithms. This is due to the involved

noisy measurements that allow it to avoid local optima and

saddle points with high probability [24]. Also, it requires low

memory and computational capabilities, making it particularly

appealing for resource-constrained drone compute boards.

During each algorithm iteration, gradients relative to pair

of points close to each other are computed. Due to the short

distance between them, a sudden change of the estimated

measure is unlikely to happen, allowing us to consider slowly

time-changing objective functions. Finally, cases in which the

algorithm reliability may decrease are prevented by carefully

tuning the algorithm parameters. If not handled correctly, in

fact, such cases may lead to significant differences in the

magnitudes of subsequent points, thus undermining the opti-

mization algorithm results.

B. Objective Function

One of the most critical parts of the developed framework is

the objective function design. This needs to take into account

information on the UABS-UEs interactions and to be solvable

by the chosen optimization algorithm. In order to select proper

functions and parameters, extensive experiments concerning

downlink traffic generated by the UABS toward the connected

UEs have been performed. The considered metrics involved

jitter, packet error rate, throughput, power headroom, downlink

data and uplink control channel SNR, and channel quality indi-

cator relative to each UABS-UE pair. Among these, downlink

throughput proved to be the most meaningful metric for our

optimization problem since it allows the UABS to be aware of

how well it is serving mobile subscribers.

Even though the devised framework is general and allows us

to take into account additional metrics (i.e., QoS, MAC-layer

user scheduling parameters, path loss, etc.), this would come

at the cost of a higher computational complexity. However,

computational boards lightweight enough to be embedded in

commercial UAVs are performance- and energy-constrained,

thus demanding a low optimization computational complexity.

For illustrational purposes, thus, in this work we only consider

the UABS-UEs downlink throughput, leaving the integration

of additional metrics to future work and more mature drone

boards. Although by taking into account this metric only, we

successfully manage to demonstrate the improved network

performance achieved by our system.

The objective function we considered is as follows:

L(θk) = min{M1(θk),M2(θk), ...,Mr(θk)}, (3)

where Mi(θk) represents the value of the chosen metric mea-

sured by the i-th UE, while r is the total number of UEs

involved in the optimization procedures. This function is lever-

aged in Eq. 2 to estimate the gradient in the current position

θk, which is, then, used in Eq. 1 to compute the next UAV

position. We would like to remark the presence of the positive

sign in Eq. 1, which allows the algorithm to move toward

a point that maximizes the underlying optimization function.

This favors the UE with the smallest throughput and guarantees

user fairness.



C. System Parameters

Our optimization algorithm requires the characterization of

the parameters ak, ck and ∆k of Eqs. 1 and 2 while considering

the objective function convergence properties [25]. By follow-

ing Spall’s SPSA directives [26], we define ak and ck as

ak =
â

(A+ k + 1)α
, (4)

ck =
ĉ

(k + 1)γ
, (5)

where A < 0.1Kmax, with Kmax being the maximum number

of algorithm iterations. We choose Kmax = 1000 and A = 99.

The values for α and γ, instead, are α = 0.602 and γ = 0.101
if k ≤ ksw, and α = 1 and γ = 1

6
otherwise, where

k is the current iteration, while ksw = 0.1Kmax. In our

experiments, we set ksw = 100. This is done in order to speed

up the convergence procedures during the first ksw iterations,

as suggested in [23], and then stabilize α and γ to their optimal

values [25, 27]. Values for â and ĉ, instead, are empirically

derived and adapted during different trials in order to obtain

a good trade-off between convergence speed and number of

iterations to reach convergence. Finally, suitable candidates

for ∆k must have all the ∆kj
components independent and

symmetrically distributed around zero, as well as finite inverse

first and second moments [23]. In this case, a Rademacher

distribution was adopted.

V. AERIAL BASE STATION PROTOTYPE

In this section, we describe our UABS prototype along with

its three main components: The Control Station, the Computing

Board and the Pixhawk FCU. The UABS prototype diagram is

shown in Fig. 2.

Fig. 2: UABS prototype diagram.

The Control Station is the center of operations from which

new commands and directives can be sent to the UABS (e.g.,

new missions, utility functions, additional constraints, etc.).

It runs the QGroundControl mission planning tool and it is

wirelessly connected to the UABS Computing Board.

The Computing Board is the very core of the UABS. It

features a MavLink Router able to interact with the Control

Station QGroundControl tool via TCP/UDP connections. This

component receives flying commands to be, then, interchanged

with the Pixhawk. Furthermore, the Computing Board lever-

ages the OAI software to run an all-in-one LTE-compliant eNB

and Core Network implementation, and provides IP connec-

tivity to ground users attached to it. Additionally, it embeds

a Python framework that sends UDP data streams to the con-

nected UEs, receives their feedback measurements, and reads

OAI statistics. All these measurements are, then, fed to the

optimization algorithm and taken into account to compute the

optimal drone location. This framework also marshals packets

between the optimization program, the MAVLink Router, and

the board kernel drivers by using reconfigurable APIs such as

PyMAVLink and Dronekit. Finally, a software-defined radio

enables communication among OAI and mobile subscribers.

The PX4 Pixhawk FCU gets MAVLink control commands

from the Computing Board MAVLink Router and interacts

with the drone itself. This component reads data from the drone

sensors (e.g., compass, GPS, magnetometer, etc.) and regulates

rotors thrust and spinning velocity to adjust the UABS position

according to the found optimization results.

Fig. 3: UABS prototype implementation.

Our UABS prototype is shown in Fig. 3. A DJI Matrice 100

quadcopter is used as drone frame, on top of which an Intel

NUC running Ubuntu Linux 16.04 LTS operates as Computing

Board. A PX4 Pixhawk FCU is mounted on the drone and

communicates with on-board sensors, such as a PX4Flow

optical flow smart camera, allowing for a fine-tuned indoor

drone flight. As for the employed SDR, the UABS embeds an

Ettus Research Universal Software Radio Peripheral (USRP)

B200mini-i running the USRP Hardware Driver (UHD) FPGA

software. The USRP is equipped with VERT2450 omnidirec-

tional antennas and enables LTE-compliant communication be-

tween the UABS and its subscribers through the OAI software

that runs on the Intel NUC board. Finally, additional sensors

such as GPS and magnetometer are placed on top of the USRP

and connected to the FCU.

As UEs, we use commercial Android smartphones, such

as Samsung Galaxy S6 edge and Wiko Fever 4G. These are

equipped with programmable SIM cards subscribed to the OAI

Core Network, and allow them to promptly attach to the OAI

eNB. Finally, a Linux workstation running Ubuntu 18.04 LTS

is used as ground Control Station.



VI. EXPERIMENTAL RESULTS

We performed several experiments in order to test the effec-

tiveness of our system. Values of the used parameters are given

in Table I.

TABLE I: Experiment Parameters.

Parameter Value

ak
â

(A+k+1)α

ck
ĉ

(k+1)γ

ĉ 2

â 10
−3

α 0.602 if k ≤ ksw, 1 otherwise

γ 0.101 if k ≤ ksw, 1
6

otherwise

A 99

ksw 100

Kmax 1000

We considered a scenario with one UABS serving downlink

data traffic to one connected UE. The UABS improves the pro-

vided service optimizing its position according to the measured

metrics discussed in Section III. Since LTE transmissions are

involved, experiments have been performed in a 20× 20× 4m
anechoic chamber, shown in Fig. 4a.

(a) Anechoic chamber. (b) UABS path recorded by the ground
station.

Fig. 4: UABS experimental setup.

The UABS periodically sends UDP downlink data to the

connected UE through the iperf3 Linux tool at the constant

bit rate of 10 Mbps. The user, then, measures statistics of the

received data and communicates them as a feedback to the

UABS. The height of the UABS is set to 2m, while its cruising

speed to 1 m/s. The loitering time to collect user feedback is

2 s, allowing the UE to measure the metrics of interest and to

attenuate non-deterministic aspects due to the drone hovering.

The initial distance between UE and UABS is 9.5m. In Fig. 4b,

we see the path traveled by the drone, and registered by the

ground station, while running the optimization algorithm. Dur-

ing each experiment, the UABS reached the global optimum

in 11 minutes, on average, getting as close as 0.4 m from the

UE. The average post-optimization measured throughput value

is 9.97Mbps (see Fig. 5), very close to the transmit throughput

of 10 Mbps.

Fig. 5: Throughput convergence vs. optimization algorithm

iterations.

Fig. 5 shows the throughput values received by the UABS

as feedback from the UE during different iterations of the

optimization algorithm. For the sake of clarity, only the curves

of a single experiment are shown. During each iteration, the

UABS moves toward two neighbor locations close to the po-

sition computed in the previous iteration: nominally first and

second neighbor. We see that both neighbor curves start from a

value between 1 and 2 Mbps and increase until they converge

to approximately 9.5 Mbps. This shows that the optimization

algorithm effectively manages to get very close to the global

optimum of 10 Mbps.
In Fig. 6, we show the measured throughput by the UE

relative to the downlink data sent by the UABS. Contrary to

what done before, in this experiment we do not set any fixed

transmit rate. We notice that the throughput starts with values

as high as 15Mbps and then decreases with the increase of the

UABS-UE distance due to path loss. By leveraging this metric

in the optimization algorithm, the UABS is able to effectively

optimize its location and provide a better service to mobile

subscribers (see Fig. 5).

VII. DISCUSSION

The provided results are limited to a single UABS and UE

in a controlled environment. Further study is needed to fully

understand additional factors, such as the height of the drone,

the type of antennas involved, the angle between transmitter

Fig. 6: Average throughput measured by the UE as a function of

the UABS-UE distance, 95% confidence intervals are shown.



and receiver, and so on. Taking these parameters into account

could improve the obtained optimization results at the expense

of a higher computational complexity. This, though, would

hardly be sustainable by compute boards with limited capabili-

ties such as the ones not exceeding the payload of medium and

small drones.

Thus, the current work represents a starting point in develop-

ing next generation mobile HetNets as a cost-effective solution

to quickly recover from temporary failures of the terrestrial

infrastructure. Moreover, the current work could be extended

in a multi-cell scenario, in which several UABSs cooperate to

reach a common goal.

The presented approach, while allowing UABSs to save

computational resources, suffers from some issues related to

use of greedy algorithms. These are, for instance, a tight de-

pendence on the underlying objective function and the number

of optimization steps required for convergence. The first issue

is still an open research problem, since there is no one-fit-all

solution, but solutions must be tailored for the each specific

application, instead. On the contrary, the second issue could be

mitigated by introducing memory capabilities in the gradient-

based algorithm to prevent the UAV from visiting the same area

multiple times in a short time-lapse. Another possible solution

would be sharing the drones’ knowledge to cooperatively map

the area of interest.

VIII. CONCLUSIONS

We presented a quality-aware aerial-to-ground 5G cell

framework with position optimization capabilities for next

generation Unmanned Aerial Base Stations (UABSs). The

proposed system aims at improving users’ service in scenarios

in which the underlying mobile infrastructure fails or tem-

porarily overloads. The devised approach runs a gradient-based

algorithm to compute the optimal UABS position relying on

metrics of the UABS-UEs system only, and without using any

additional source of information. In this way, our framework

also manages to reduce the execution overhead and workload.

We prototyped the devised UABS by leveraging standard-

compliant 4G/5G software and off-the-shelf commercial hard-

ware, and experimentally demonstrated its effectiveness. Re-

sults show that the UABS is able to find the optimal position to

enhance service provided to mobile subscribers.

Future work will focus on further experiments involving a

larger number of devices, on improving our algorithm robust-

ness to wireless channel conditions (e.g., collisions and inter-

ference) in multi-UABS scenarios, and on developing multi-

device interference-aware dynamic positioning algorithms.
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