
Real-time AI-enabled CSI Feedback
Experimentation with Open RAN

Hai Cheng∗, Pedram Johari∗, Mohamed Amine Arfaoui†, Francois Periard†,
Philip Pietraski†, Guodong Zhang†, Tommaso Melodia∗

∗Institute for the Wireless Internet of Things, Northeastern University, Boston, MA, U.S.A.
†Interdigital Inc., U.S.A.

∗{cheng.hai, p.johari, t.melodia}@northeastern.edu
†{MohamedAmine.Arfaoui, Francois.Periard, Philip.Pietraski, Guodong.Zhang}@InterDigital.com

Abstract—There is interest from academia and industry to
investigate the application of Artificial Intelligence (AI)/Machine
Learning (ML) to various use cases associated with the Air
Interface of cellular systems, e.g., for reporting Channel State
Information (CSI) feedback, for beam management, and for
positioning accuracy. In this paper, we develop a research
platform capable of real-time inference using an AI-enabled CSI
feedback that closely represents real-world deployment scenarios.
In our experiment, we evaluate the performance of the proposed
framework by integrating a CSI autoencoder into the OpenAir-
Interface (OAI) 5G protocol stack. Further, we demonstrate the
real-time functionality of the CSI compression framework with
the encoder deployed at the User Equipment (UE) and CSI
reconstruction with the decoder deployed at the Next Generation
Node Base (gNB). The experiments are conducted on an Over-
the-Air (OTA) indoor testbed platform, ARENA, as well as, on
an emulated environment using Colosseum, the world’s largest
wireless network emulator.

Index Terms—AI/ML, CSI feedback, Real-time experiments,
Open Radio Access Network (Open RAN)

I. INTRODUCTION

Inspired by the success of AI/ML applications in com-
puter vision and natural language processing, research has
moved towards evaluating the applications of AI/ML in wire-
less communication. The 3rd Generation Partnership Project
(3GPP) Release 18 includes AI/ML for air interface as a
Study Item [1]. The study aims to evaluate the potential
benefit and associated complexity of a number of use cases,
including AI/ML-based CSI compression and feedback. There
have indeed recently been several works investigating the
application of AI/ML into CSI compression [2]–[4]. However,
all these works are based on simulation data, and to the best
of our knowledge, no real-time experiments are conducted
to compare efficiency and complexity based on results from
practical systems.

In the past few years, applying ML techniques to address
a variety of challenges in next-generation wireless networks
has been widely discussed. Among those, re-designing the
physical layer with AI-driven alternatives has drawn some
attention [5]–[7]. Deep Learning (DL) was first introduced
into the physical layer in [5]. A Neural Network (NN)-based

This article is based upon work partially supported by InterDigital Inc. and
the U.S. National Science Foundation under grants CNS-1925601.

communication system working on OTA transmission was
developed in [6]. An NN-based WiFi Orthogonal Frequency
Division Multiplexing (OFDM) receiver was proposed in [7].
An autoencoder-based CSINet was first proposed to compress
CSI to reduce CSI feedback overhead in [2]. After that, various
AI-based CSI feedback works were proposed [3], [4]. [8]
provides a detailed review of AI/ML for CSI feedback for
cellular systems.

In this paper, we develop a real-time AI-enabled CSI
feedback experimental platform based on 5G Open RAN,
and evaluate an AI-driven real-time CSI compression model
as a practical use case. The developed platform is based on
OAI open-source 5G protocol stack. An autoencoder-based
CSI compression model, trained from MATLAB simulation
data, is deployed based on Microsoft’s Open Neural Network
Exchange (ONNX) runtime. The model and runtime are both
integrated into OAI-based platform to be evaluated on Arena,
which is an indoor OTA testbed [9], as well as on Colosseum,
which is the world’s largest wireless network emulator with
hardware-in-the-loop (HITL) [10]. We present the experimen-
tal results, including feedback overhead, CSI reconstruction
accuracy, and inference latency, to evaluate the practicality
and the performance of the platform.

The remainder of this paper is organized as follows. Section
II introduces the existing CSI feedback framework in 5G sys-
tems, and associated AI-enabled studies. The framework of our
developed platform is elaborated in Section III. Experimental
results are presented in Section IV and conclusions are drawn
in Section V.

II. 5G CSI FEEDBACK FRAMEWORKS

We introduce the codebook-based CSI feedback and AI-
enabled CSI feedback in this section. Codebook-based CSI
feedback framework has been adopted in existing 4G and
5G cellular systems [11]. Codebook in the context of CSI
feedback is a set of precoding matrices shared by the UE and
the Base Station (BS). Under this framework, UE searches
the best matching codeword for the estimated channel and
feedbacks the index of the selected codeword to the BS. The
BS acquires the corresponding precoding matrix by looking up
the shared codebook with the feedback codeword index. This
feedback is constrained by two factors: codebook resolution

OT
A

Tr
an

sm
iss

io
n

OAI Blocks

ML Blocks

Auxiliary
Function

CSI-RS
Estimates

CSI Pre-
Processing

Feedback
via PUCCH

Qu
an

tiz
at

io
n

nrUE

Extraction
PUCCH

De
-Q

ua
nt

iza
tio

n

ONNX
Runtime

CSI
Decoder

gNB

CSI Post-
Processing

Config
PDSCH

CSI
OutputData

Collection

ONNX
Runtime

CSI
Encoder

CSI
Input

Fig. 1. Framework of End-to-end 5G Open RAN experiments. The light gray boxes are blocks/modules from OAI. The pink boxes are AI/ML modules
(models or runtime). The light lavender boxes are auxiliary functions developed to support the running of AI/ML modules. The dotted lavender boxes are the
modules beyond the scope of this paper. The blue boxes represent the collected data.

and codeword lookup algorithm complexity. In massive Mul-
tiple Input Multiple Output (MIMO) systems, the codebook
size increases drastically and thus the feedback overhead, as
well as the memory and computational complexity increase to
maintain the feedback accuracy.

AI-enabled CSI feedback is one possible option to address
these aspects. An autoencoder-based CSI compression model
can accommodate this use case. In an autoencoder-based CSI
compression framework, the NN encoder compressing the
CSI into codewords is placed at the UE side and the NN
decoder reconstructing the CSI is placed at the gNB side.
Following this compression framework, we developed our real-
time AI-enabled CSI feedback platform. To be specific, the
raw channel estimates computed from the 5G protocol stack
are pre-processed and then fed to a CSI encoder at the UE side.
The gNB reconstructs the pre-processed channel by decoding
the CSI feedback from the UE. The details of our platform
are given in the next section.

III. AI-ENABLED CSI FEEDBACK IN OPEN RAN

In this section, we explain the framework for our real-time
AI-enabled CSI feedback platform, which is depicted in Fig.
1. First, we introduce OAI, which is an Open RAN compliant
5G protocol stack implementation, and how to integrate CSI
autoencoder into OAI codebase with the help of ONNX run-
time. Then, we introduce how our CSI autoencoder is trained,
including CSI dataset generation and the NN architecture. The
CSI feedback performance is discussed at the end.

A. Integration of CSI Autoencoder into 5G Networks

1) OpenAirInterface 5G Networks: OAI [12] is an open-
source Open RAN compliant reference implementation of
4G/5G Radio Access Network (RAN) and core network. OAI
is designed to run on general-purpose x86 CPU together with
Software-defined Radio (SDR). In our platform, we adopt OAI
gNB as a 5G base station and OAI nrUE as a 5G UE to
form an end-to-end 5G network. Both gNB and nrUE are
running on x86 Ubuntu equipped with Universal Software
Radio Peripheral (USRP) Radios. Note that we also use OAI
5G core network in the experiment. However, we omit it from
the block diagram since it is unrelated to CSI feedback.

2) ONNX Runtime: ONNX [13] is an open format de-
signed to represent DL and traditional ML models. Three
benefits make ONNX runtime a good choice for real-time

inference. First, ONNX defines a common set of DL/ML
building blocks and a common file format, which enables its
interoperability between different deep learning frameworks,
such as TensorFlow, PyTorch, MATLAB, and so on. This
feature allows AI developers to train models in one framework
and deploy the models in another framework by ONNX model
converting. That also makes it convenient to use and compare
various pre-trained models from different frameworks. Second,
ONNX runtime enables efficient and fast inference on various
platforms, which is crucial for latency-aware 5G RAN appli-
cations. Third, x86 CPU-based ONNX runtime is lightweight
(18MB in Ubuntu), which makes it convenient to be integrated
with the OAI codebase.

3) Auxiliary Functions and CSI Autoencoder: To enable
the inference of the CSI autoencoder within OAI 5G protocol
stack, we first split the autoencoder into CSI encoder and CSI
decoder. The encoder is at the UE side and the decoder is
at the gNB side, as shown in the pink box of Fig. 1. Some
auxiliary functions are developed to support the inference of
encoder and decoder, as shown in the lavender box of Fig. 1.

At UE side, the raw CSI estimates are first pre-processed
and then fed into the CSI encoder. Meanwhile, the processed
CSI is saved as CSI Input data, as shown in the blue box
at nrUE part of Fig. 1. The saved data would be used to
calculate the reconstruction accuracy in Section. IV. The
output of the CSI encoder is full-precision floating point
numbers. They are quantized into N -bit integer codewords.1

Those CSI codewords are finally feedback to gNB via Physical
Uplink Control Channel (PUCCH).

At gNB side, the CSI codewords are first extracted from
the PUCCH payload and then de-quantized into floating point
numbers. With the fed floating-point codewords, the CSI
decoder generates reconstructed CSI, which is saved as CSI
Output data. The reconstructed CSI needs to be post-processed
and finally used to configure Physical Downlink Shared Chan-
nel (PDSCH), like Modulation and Coding Scheme (MCS) and
MIMO precoding matrix.

B. Dataset Generation and Autoencoder Architecture

1) Dataset: We use MATLAB 5G toolbox [14], [15] to
generate a dataset for CSI autoencoder training. A 2×2 MIMO
clustered delay line (CDL) D channel is simulated, where

1We will explore the influence of N in Sec. IV.

the carrier frequency is 3.6GHz, delay spread is 300ns, and
UE moving speed is 0.5 m/s. The 5G carrier is with 30KHz
subcarrier Spacing and 106 Physical Resource Block (PRB),
which corresponds to 40MHz bandwidth.

Given the above setting, the raw channel estimate from one
RX port within one slot is a complex array with the size
of [1272, 14, 2], where 1272 = 12 ∗ 106 is the number of
subcarriers for 106 PRB, 14 is the number of OFDM symbols
within one slot, and 2 is the number of TX antennas. Since
the channel can be considered to be constant within one slot,
we average the estimates over 14 OFDM symbols and thus the
estimate is with size [1272, 2]. To further reduce the size of
channel estimates, channel estimates are sparsified by applying
2D discrete Fourier transform (DFT), which transforms the
raw channel estimates in the spatial frequency domain into
the angular-delay domain. In the delay domain, we extract the
first 24 row where it contains the most non-zero value. We get
channel estimates with size [24, 2] so far.

Note that the channel estimates are complex and NN process
real numbers in general. Thus, we convert channel estimates
from complex to separate real and imaginary parts. Therefore,
the pre-processed channel estimates are real matrices with the
size of [24, 2, 2]. We generate 15K channel estimates in total,
where 10K is used for training, 3K is used for validation, and
2K is used for testing. The above data generation and pre-
processing procedures basically follow the steps in [2].

2) Autoencoder NN Architecture: We follow the autoen-
coder NN architecture in [2] and the example in [15]. In
our work, the output of the encoder, named latent variables,
is designed to be with size [2, 1]. The details of the NN
architecture are depicted in Fig. 2. During inference, the output
of the encoder is first quantized into codewords and then fed to
the decoder via PUCCH, as shown in Fig. 1. For the training
stage, the output of the encoder is directly fed into the decoder.
In terms of complexity, the encoder has 240 parameters and
17.3K floating point operations (FLOPs). For the decoder, it
has 3753 parameters and 24.3K FLOPs.

C. CSI Feedback Performance

The main challenges of CSI feedback are the requirements
for high reconstruction accuracy and low feedback latency
at gNB, given the limited uplink bandwidth of UE. Thus,
the evaluation of a CSI feedback framework relies on three
metrics: feedback overhead, reconstructed CSI accuracy, and
inference latency. For feedback overhead, it is measured by the
total number of feedback bits, which is a multiplication of the
number of codewords and quantization bits. For reconstruction
accuracy, it is measured by the normalized mean-square error
(NMSE) between the input CSI and the reconstructed CSI. For
inference latency, it is measured by the execution time of the
encoder at the UE side and the decoder at the gNB side. The
execution time is determined by the model complexity, AI/ML
runtime, and hardware platform.

Note that the CSI feedback is finally used to configure
PDSCH. In our above discussion, we only consider a re-
constructed accuracy metric, which is the NMSE. Although

RefineNet

LeakyReLU

BatchNormalization

Conv2D

LeakyReLU

BatchNormalization

Conv2D

LeakyReLU

BatchNormalization

Conv2D

Add

Encoder
Enc_Output

Sigmoid

Dense

Flatten

Permute

LeakyReLU

BatchNormalization

Conv2D

Enc_Input

[24, 2, 2]

[2, 1]

Decoder

Dec_Output

Sigmoid

Conv2D

Reshape

Dense

Dec_Input

[24, 2, 2]

RefineNet

[2, 1]

RefineNet

Fig. 2. CSI Encoder and Decoder NN Architecture.

the throughput of PDSCH is a key system metric worth
investigating, it is however beyond the scope of this paper. Due
to this, we do not discuss the details of CSI post-processing
and PDSCH configuration, which are in the dotted box at gNB
part of Fig. 1.

IV. EXPERIMENTS AND RESULTS

We conduct real-time experiments in Arena and Colosseum
testbed. Arena is an indoor office testbed with radio trans-
mitting over the office space via a non-mobility Line-of-Sight
(LOS) channel. We use USRP X310 as Radio Unit (RU) of
gNB and UE. Both gNB and UE are on the same type of host
with 6-Core Intel E-2146G CPU, 32GB memory, and Ubuntu
22.04. The antenna’s distance between gNB and UE is about
0.5 meter. We run 2×1 MIMO experiments on band n78 with
40MHz bandwidth.2 In the experiments on Colosseum, we em-
ulate a non-mobility single-tap channel model. The same type
of host with 12-Core Intel E5-2650 CPU, 128GB memory,
and Ubuntu 18.04 serves gNB and UE. The other experiment
setting is the same as Arena. A portable demonstration setup
(similar to Arena) and instantaneous monitored metrics are
present in Fig. 3.
Accuray and Latency: We compare the CSI reconstruction
accuracy under various codewords quantization bits, based on
the experiment from the above two testbeds. The results are
summarized in Table 1. The NSME increases significantly
as the number of codeword bits is decreased. The feedback
overhead is 16/14/12/10/8 bits which corresponds to the
8/7/6/5/4 bits codewords. The inference latency is summa-
rized in Table 2. The pre-processing latency is mainly from
the 2D DFT operation. The impact of the inference latency on

2We use 2× 1 MIMO in our experiments since 2× 2 MIMO is unstable
with current OAI code.

UE Host gNB Host

UE
Radio

gNB
Radio

UE
Logs

gNB
Logs

OTA
Transmission

Fig. 3. A portable setup of our developed real-time OTA experiment platform.

other signal processing functions in OAI can be alleviated by
using a separate thread for inference operations. Besides, the
sub-ms latency is lower than the channel coherence time and
thus it can be used to configure PDSCH.
Comparison to NR Standards: With the given experiments
setting, the codebook-based CSI compression, implemented in
OAI compliant to NR Release-15, achieve 7 bits CSI feedback
overhead. However, NR codebook-based feedback overhead in
massive MIMO systems increases to be even larger than AI-
based feedback overhead. For instance, for a 32 ∗ 2 MIMO
setting, and as shown in [16], the feedback overhead from the
new codebooks proposed in NR Release-16 and Release-17
can be larger than 400 bits. Meanwhile, the AI-based feedback
overhead can achieve the same or even lower overhead by
tuning the compression ratio [2]. Thus, the benefits of AI-
based CSI feedback are more significant in massive MIMO
systems. A fair PDSCH throughput comparison between AI-
based feedback and NR codebook-based feedback is meaning-
ful but is out of the scope of this paper.

Table 1. NMSE (dB) of various CSI feedback codeword bits.

Codeword bits 8 7 6 5 4
Arena -17.60 -13.46 -7.35 -4.04 -2.20

Colosseum -18.95 -13.54 -8.86 -7.64 -6.52

Table 2. Latency (ms) of pre-processing, encoder, and decoder.

Pre-processing Encoder Decoder
Arena 0.228 0.059 0.105

Colosseum 0.247 0.104 0.283

V. CONCLUSION AND DISCUSSION

In this paper, we developed a real-time AI-enabled CSI
feedback platform based on 5G Open RAN. In the developed
platform, the 5G protocol stack is based on open-source
OAI code. The AI/ML model inference is based on ONNX
runtime which is a good intermediate representation to various
AI/ML frameworks. An autoencoder-based CSI compression
model is trained from MATLAB simulation data. The CSI
autoencoder is deployed at Arena and Colosseum testbed.

The experiment results, including feedback overhead, CSI
reconstruction NMSE, and inference latency are present to
demonstrate the functionality. Our current work shows the
capability of adopting AI-enabled CSI feedback in Open RAN.

Note that our model is trained in full precision floating point
numbers and is based on MATLAB CDL channel simulation
data. The performance of our platform can be improved by the
following two directions. First, a mixed-precision model can
reduce the model complexity and inference time with little
degradation in accuracy. This can be achieved by a mixed-
precision training or post-training model quantization. Second,
retraining or online learning according to the deployment
channel scenarios could also increase the model’s accuracy.

Many challenges remain to be investigated to demonstrate
the feasibility and the deployment of two-sided AI/ML models
in the Air Interface, which is the case of auto-encoders for
CSI feedback studied in this paper. Some of these challenges
include, for instance, scalability and generalization, practical
multi-vendor deployments, and overall system performance
measurement and monitoring.

REFERENCES

[1] X. Lin, “Artificial Intelligence in 3GPP 5G-Advanced: A Survey,” May
2023. [Online]. Available: https://arxiv.org/abs/2305.05092

[2] C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive mimo
csi feedback,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp.
748–751, 2018.

[3] M. Chen, J. Guo, C.-K. Wen, S. Jin, G. Y. Li, and A. Yang, “Deep
learning-based implicit csi feedback in massive mimo,” IEEE Transac-
tions on Communications, vol. 70, no. 2, pp. 935–950, 2022.

[4] Y. Cui, A. Guo, and C. Song, “Transnet: Full attention network for csi
feedback in fdd massive mimo system,” IEEE Wireless Communications
Letters, vol. 11, no. 5, pp. 903–907, 2022.

[5] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[6] S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep learning
based communication over the air,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 132–143, 2018.

[7] B. Azari, H. Cheng, N. Soltani, H. Li, Y. Li, M. Belgiovine, T. Imbiriba,
S. D’Oro, T. Melodia, Y. Wang et al., “Automated deep learning-based
wide-band receiver,” Computer Networks, vol. 218, p. 109367, 2022.

[8] J. Guo, C.-K. Wen, S. Jin, and X. Li, “Ai for csi feedback enhancement
in 5g-advanced,” IEEE Wireless Communications, pp. 1–8, 2022.

[9] L. Bertizzolo, L. Bonati, E. Demirors, A. Al-Shawabka, S. D’Oro,
F. Restuccia, and T. Melodia, “Arena: A 64-antenna sdr-based ceiling
grid testing platform for sub-6 ghz 5g-and-beyond radio spectrum
research,” Computer Networks, vol. 181, p. 107436, 2020.

[10] “Colosseum,” Nov 2023. [Online]. Available: https://www.colosseum.net
[11] 3GPP TS 38.214, “Physical layer procedures for data,” Tech. Rep., 5

2022. [Online]. Available: https://www.etsi.org/deliver/etsi ts/138200
138299/138214/17.01.00 60/ts 138214v170100p.pdf

[12] “Openairinterface,” Nov 2023. [Online]. Available: https:
//openairinterface.org/

[13] ONNX Runtime developers, “Onnx runtime,” 2023, version: 1.16.0.
[Online]. Available: https://onnxruntime.ai/

[14] The MathWorks Inc., “5g toolbox,” 2023, version: 2.6, R2023a.
[Online]. Available: https://www.mathworks.com/products/5g.html

[15] ——, “Csi feedback with autoencoders,” 2023.
[Online]. Available: https://www.mathworks.com/help/5g/ug/
csi-feedback-with-autoencoders.html

[16] Z. Qin and H. Yin, “A review of codebooks for csi feedback in 5g new
radio and beyond,” arXiv preprint arXiv:2302.09222, 2023.

