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ABSTRACT

The cellular networking ecosystem is being radically transformed

by openness, softwarization, and virtualization principles, which will

steer NextG networks toward solutions running on “white box” in-

frastructures. Telco operators will be able to truly bring intelligence

to the network, dynamically deploying and adapting its elements

at run time according to current conditions and traffic demands.

Deploying intelligent solutions for softwarized NextG networks,

however, requires extensive prototyping and testing procedures,

currently largely unavailable. To this aim, this paper introduces

SCOPE, an open and softwarized prototyping platform for NextG

systems. SCOPE is made up of: (i) A ready-to-use, portable open-

source container for instantiating softwarized and programmable

cellular network elements (e.g., base stations and users); (ii) an em-

ulation module for diverse real-world deployments, channels and

traffic conditions for testing new solutions; (iii) a data collection

module for artificial intelligence and machine learning-based ap-

plications, and (iv) a set of open APIs for users to control network

element functionalities in real time. Researchers can use SCOPE

to test and validate NextG solutions over a variety of large-scale

scenarios before implementing them on commercial infrastruc-

tures. We demonstrate the capabilities of SCOPE and its platform

independence by prototyping exemplary cellular solutions in the

controlled environment of Colosseum, the world’s largest wireless

network emulator. We then port these solutions to indoor and out-

door testbeds, namely, to Arena and POWDER, a PAWR platform.
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1 INTRODUCTION

Cellular networks are undergoing a radical transformation whereby

traditional “black box” architectures—merely capable of operat-

ing under a few possible configurations dictated by equipment

manufacturers—are being replaced by programmable infrastruc-

tures driven by open software and based on “white box” hard-

ware [8, 9, 11, 32, 44, 48].

The guiding principles of this Copernical revolution, urged by

increasing traffic demand and by the requirements of future gen-

eration (“NextG”) cellular systems, are open programmablity, soft-

warization and virtualization [26, 37, 51]. By embracing these par-

adigms Telco Operators (TOs) will be able to: (i) Achieve swift

control of the network and its functionalities by abstracting and

orchestrating them as virtual network functions; (ii) implement

differentiated service strategies by deploying network slices each

tailored to specific traffic classes and users, and (iii) design and

deploy custom algorithms for real-time network optimization for

different network conditions and application requirements.

All these new capabilities will considerably facilitate and speed-

up the establishment and advancement of NextG systems, in that

open software will enable swift definition and deployment of appli-

cations over white box infrastructures [27, 37, 41]. However, while

developing new software solutions for open architectures might be

considerably easier than before, demonstrating their effectiveness,

efficiency, reliability and robustness in a host of varying scenarios

becomes paramount. Indeed, it is necessary to ensure that nothing

jeopardizes the performance, stability, and security of the network

and of the services provided to millions of users. It is therefore

imperative for TOs to require that all networks algorithms and soft-

ware components are extensively tested prior to actual deployment

on the commercial infrastructure.

As owners of said infrastructure, in principle TOs could test new

software solutions on it. Such a choice, however, is neither trivial

nor cost-effective as trying out new solutions on the commercial

network might induce undesirable behavior and cause unforeseen

outages and financial loss. As an alternative, new solutions could be

first tested in smaller laboratory setups. These trials, however, can

only capture a limited number of Radio Frequency (RF) scenarios

and would merely model small-scale deployment configurations,

limiting their effectiveness and extent.

Controlled testing at scale is therefore needed. Indeed, solutions

for wireless testing at scale are well on the way. Programs such

as the Platforms for Advanced Wireless Research (PAWR) by the

U.S. National Science Foundation are fostering the creation of large

wireless testing sites [39]. PAWR platforms like POWDER [10, 19],

COSMOS [43] and AERPAW [45], provide controlled access to a va-

riety of real wireless testbeds with a relatively large set of white box

hardware and software resources. Colosseum—the world’s largest

415



MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso Melodia

network emulator [14]—also provides researchers with testing at

scale, offsetting the site specificity of physical testbeds like the

PAWR platforms through a fully controlled, programmable, and

observable environment with hardware in the loop. Colosseum

is a massive 256-by-256-channel RF emulator with programmable

Software-defined Radios (SDRs), capable of emulating full-stack

communications with abundant computational capabilities. Virtual

worlds can be created as if the radios were operating in an open field,

downtown area, forests or a desert, namely, emulating a vast variety

of realistic wireless scenarios [47]. Whether real or emulated, using

these platforms for designing and prototyping production-ready

solutions is not straightforward because of the lack of uniform

access and the host of different interfaces to their components.

In this paper, we address the key issue of facilitating platform-

independent design by presenting a Softwarized Cellular Open Pro-

totyping Environment (SCOPE), a development environment tai-

lored to the design, prototyping and testing of solutions for the

softwarized NextG cellular Radio Access Network (RAN). SCOPE

consists of a virtualized container and an emulation environment

with the following features:

• Open and portable implementation. SCOPE includes an open-

source implementation of a 3rd Generation Partnership Project

(3GPP)-compliant softwarized cellular Base Station (BS). The cellu-

lar BS adds novel capabilities to the srsLTE (now renamed “srsRAN”)

base implementation, such as RAN slicing, andMediumAccess Con-

trol (MAC) and Physical (PHY)-layer functions. These allow, for

instance, to run multiple virtual networks on top of the same phys-

ical infrastructure, with the option to select a different scheduling

policy in each one of them. Fine-tuning the Modulation and Coding

Scheme (MCS) of each mobile subscriber, and implementing down-

link power-control schemes are also possible. These functionalities

can either be controlled directly through the SCOPE open-source

implementation, or through a set of Application Programming Inter-

faces (APIs), also enabling real-time reconfiguration of softwarized

network elements. To make SCOPE platform-independent, we de-

veloped a ready-to-deploy Linux Containers (LXC) [13] instance of

SCOPE to be deployed on LXC-enabled Linux machines.

• Data collection capabilities. SCOPE includes a data collection

module for automatically recording the performance of the network.

Collected data can be used at run time, e.g., to design adaptive

solutions, or offline, e.g., to facilitate the design, training and testing

of Machine Learning (ML)/Artificial Intelligence (AI) algorithms.

• Prototyping RF and traffic scenarios. To further facilitate NextG

experimental research, we developed a set of real-world RF and

traffic scenarios—namely, SCOPE scenarios—that can be run through

the Colosseum emulator. SCOPE users can leverage them to test

algorithms at scale under diverse channel conditions (e.g., position,

mobility), network deployments (e.g., rural, urban) and traffic.

• Repeatability, reproducibility and replicability at scale. All SCOPE

scenarios are executed in a deterministic way. This means that

while channel coefficients and traffic change over time during an

experiment, all experiments executed with the same scenario will

experience the very same channel and traffic conditions. In this

way, our system can be used to prototype and fine-tune solutions by

experimenting at scale in repeatable environments before testing

them in the field.

We demonstrate the effectiveness of SCOPE as a prototyping en-

vironment by: (i) Analyzing the statistical properties of SCOPE cel-

lular scenarios representative of diverse urban environments, and

(ii) showcasing exemplary ML and optimization applications. We

also provide an example of how SCOPE can be used to port solutions

prototyped on Colosseum to real-world heterogeneous testbeds,

namely the indoor Arena [4], and the outdoor POWDER [10].

The remainder of this paper is organized as follows. Section 2

presents an overview of how to use SCOPE for wireless experi-

ments. The open-RAN implementation of SCOPE and its capabili-

ties are described in Section 3. The SCOPE emulation environment

is presented in Section 4. Section 5 showcases use cases of SCOPE,

including ML and optimization applications, and demonstrates the

portability of SCOPE to different testbeds. Finally, related works

are surveyed in Section 6, and conclusions are drawn in Section 7.

2 EXPERIMENTINGWITH SCOPE

The lifetime of an experiment with SCOPE is illustrated in Figure 1.

For enhanced clarity, we provide a step-by-step summary of how

to use SCOPE on Colosseum. However, SCOPE can be instantiated

on any LXC-enabled testbed (Section 5.3).

Colosseum DomainUser Domain

SCOPE

Container
Copy of SCOPE

Customized 

SCOPE

Add Control Logic 
and Algorithms

Download 
SCOPE

RF / Traffic 

Scenario

User 

ContainersUpload
Customized 
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Schedule / Run 

Experiment

Select 
Scenarios

Get Data

6

1

2
3

4

5
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Figure 1: High-level lifetime of SCOPE experiments.

Users first download a copy of the SCOPE container (Section 3)

that includes the code to instantiate BSs and User Equipments (UEs),

as well as our SCOPEAPIs (Section 3.3) for controlling key functions

of the softwarized BS at run time (step 1 in the figure). Then, on

their local machine (User Domain in the figure), SCOPE users add

the desired control logic and algorithms to the container either via

the SCOPE APIs or by interfacing directly with its open-source

code. In this way, a “customized” instance of SCOPE is created

(step 2). Users can now select RF and traffic scenarios for their

experiment (Section 4.2) from the set of available SCOPE scenarios,

through a dedicated Graphical User Interface (GUI) (step 3). After,

researchers can upload their customized container (i.e., SCOPE with

user-defined control logic) to Colosseum (step 4). They can then

schedule an experiment (through a web GUI) specifying parameters

such as the number of nodes (step 5).
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In the case of Colosseum, each node, or Standard Radio Node

(SRN), consists of a GPU-endowed server connected to one USRP

X310. SRNs are fully programmable and serve as virtualized envi-

ronments running LXC. This makes it possible to use them as either

compute-only (e.g., edge or cloud servers) or compute-and-transmit

(e.g., UE or BS) nodes.

As soon as the configuration phase is complete, Colosseum de-

ploys the containers on the selected SRNs, starting the experiment.

Network run-time metrics are saved in CSV format in the metrics

and performance dataset. Users can either query the generated

dataset at run time (e.g., using it as a feedback loop) or download it

at the end of the experiment to refine the control logic (step 6).

3 SCOPE VIRTUALIZED CONTAINER

We designed SCOPE1 to facilitate the development of new, adaptive

solutions for NextG softwarized cellular systems. A SCOPE con-

tainer, realized through LXC, is a flexible and ready-to-use prototyp-

ing toolkit for users to effortlessly instantiate platform-independent

softwarized networks.

The main components of a SCOPE container are: (i) A soft-

warized cellular protocol stack of BSs, UEs and core network (Sec-

tion 3.1); (ii) a data collection module for artificial intelligence and

machine learning applications (Section 3.2), and (iii) a set of open

APIs for users to interface with and control the other two compo-

nents in real time (Section 3.3).

Users can instantiate SCOPE on any LXC-enabled Linux system

(e.g., Colosseum, POWDER and Arena, as discussed in sections 4

and 5.3), and control the BSs and their configuration in real time

with just a few lines of code through a set of high-level open APIs, or

by modifying directly the open-source code. The APIs are directly

interfaced with the data collection module, thus providing SCOPE

users with a feedback loop to monitor the performance and state

of the network and adapt the control strategy accordingly.

3.1 Softwarized Protocol Stack

The SCOPE BSs, UEs, and core network are based on the open cel-

lular software srsLTE [25]. SCOPE advances the programmability

and virtualization capabilities of srsLTE by considerably extending

its functionalities to include network slicing, additional MAC-layer

scheduling policies, and the ability of fine-tuning PHY-layer param-

eters at run time. The most relevant functionalities introduced by

SCOPE are described in the remaining of this section.

Network Slicing. The SCOPE implemtation of network slicing

supports the coexistence of multiple slices tailored to specific traffic

classes and UEs on the same shared infrastructure. Our implemen-

tation makes it possible to slice the spectrum available at each BS

and to dictate the resource allocation for each slice of the network.

This is achieved by specifying how many downlink Resource Block

Groups (RBGs) (and, thus, Physical Resource Blocks (PRBs)) are

allocated to each slice. For example, SCOPE makes it possible to

allocate more resources to slices associated with high data rate

traffic, while giving less resources to those slices that have lower

priority or no strict Quality of Service (QoS) requirements. Select-

ing the exact portion of the spectrum to allocate to a given slice

1SCOPE has been publicly released to the research community: https://www.colosseum.
net/colosseum/cellular-software/

is also possible. This is achieved through an allocation matrix that

specifies which of the available RBGs should be allocated to the

slice. Optionally, this allocation matrix can be periodically reloaded

at run time to dynamically modify the slice resource allocation.

To facilitate the setup and instantiation of network slices, SCOPE

APIs enable the users to specify the association between UEs and

slices according to QoS requirements. The APIs also allow to assign

different scheduling policies to each slice, and to modify them at

run time. This makes it possible to define slice-specific control

strategies. This feature is useful to evaluate how specific resource

allocations affect different slices and the services they provide.

MAC-layer Scheduling.By default, srsLTE implements a round-

robin scheduling algorithm. This limits the degrees of freedom re-

searchers can enjoy in their experiments. SCOPE implements two

additional, fairer MAC-layer scheduling algorithms: Waterfilling

and proportionally fair. Both are implemented by first computing

the amount of downlink PRBs required by the users based on the

data they request, the MCS and the transport block size. Then,

resources are granted and allocated according to the users require-

ments and slice capabilities (e.g., with an allocation proportional

to the user request in case of the proportionally fair scheduler).

Additional scheduling algorithms can be implemented and plugged

in by SCOPE users by modifying the provided resource allocation

routines. Scheduling policies can be reconfigured at run time for

either the whole network or for selected slices via the SCOPE APIs.

By combining scheduling and slicing capabilities, users can con-

trol the performance of each UE and the service levels, and recon-

figure the network at run time, if necessary. This effectively enables

TOs to offer different levels of service and subscription to UEs.

PHY-layer Capabilities. At the PHY layer SCOPE offers the

ability to fine-tune per-user downlink transmission power and

MCS (both in uplink and downlink). The former is obtained by

selecting the percentage of the maximum power to be assigned

to downlink signals of the selected UEs. The latter is an integer

number in the range [0, 28] that can be used to change modulation

scheme and coding rates of downlink and uplink transmissions on

a per-user basis. Current available choices for the modulation are

Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude

Modulation (QAM) and 64 QAM. The relationship between MCS

index, modulations and coding rate is defined by Tables 7.1.7.1-1,

7.1.7.1-1A and Table 8.6.1-1 in [2].

3.2 Data Collection Module

Artificial Intelligence is rapidly reshaping the way we design and

operate cellular networks. Unfortunately, one of the issues that has

plagued the research community for years is the almost complete

lack of large-scale datasets to trainMLmodels. Business and privacy

concerns often keep TOs from publicly releasing their datasets, thus

slowing down innovation and advancements in the field from the

research community. Recently, the release of open-source software

for cellular networks has enabled researchers to generate their own

datasets. However, this is no easy task as testbeds are usually small-

scale and can only model network behavior in limited setups. This

makes it hard to train models that can be applied to diverse network

deployments and conditions.
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SCOPE aims at overcoming these limitations by including a data

collection module for the creation of large-scale datasets over a

wide number of realistic RF and traffic scenarios. Used on experi-

mental testbeds such as Colosseum, SCOPE provides an effective

tool for data collection and experimentation of ML/AI solutions in

large-scale cellular networks. The main advantage over existing

platforms is that SCOPE combines hardware-in-the-loop execution

of cellular procedures with the reconfigurability of the RF chan-

nels provided by Colosseum. In this way, while other platforms are

representative only of their physical deployment (e.g., location of

radios, channel conditions), SCOPE (combined with Colosseum)

supports data collection from a virtually infinite number of scenar-

ios and channel conditions. This facilitates the design and testing of

ML/AI solutions that are not tied to specific network deployments.

Detailed statistics (e.g., throughput, MCS, buffer size, slice PRBs)

on the performance of each BS and UE are periodically logged by

the SCOPE data collection module and stored in a CSV-formatted

dataset. As we will discuss in Section 3.3, data generated by this

module can be accessed via the SCOPE APIs at run time, allowing

the implementation of closed-loop optimization and data-driven

control routines.

3.3 Open APIs

A sample of relevant SCOPE Python APIs is shown in Table 1.

They facilitate the run-time reconfiguration of network slicing,

scheduling and PHY-layer parameters (Section 3.1), among others.

They also allow SCOPE users to query the metrics and performance

dataset (Section 3.2).

Table 1: Sample of relevant SCOPE Python APIs.

Function Description

enable_slicing Enables/disables network slicing globally

set_slice_users Set UE-slice associations

get_slice_users Get UE-slice associations

set_slice_resources Sets resources allocated to the slice

set_slice_scheduling Sets slice scheduling policy

set_slice Sets slice scheduling and/or resources

set_scheduling Sets global scheduling of the BS

set_mcs Sets UE downlink/uplink MCS

set_power Sets scaling factor for UE downlink signals

read_metrics Reads metrics from dataset

get_metric Returns value of a specific metric

For instance, network slicing can be enabled/disabled globally

for the whole network (enable_slicing). If enabled, SCOPE APIs

allow to set/get the UEs associated to each slice of the network

(set/get_slice_users). The behavior of each slice can be configured

in terms of allocated PRBs—which reflects the portion of spectrum

available to the slice—and scheduling policy (set_slice_resources,

set_slice_scheduling). Additionally, PRBs and scheduling of each

slice can also be jointly set (set_slice). Besides allowing users to set

the scheduling policy for each slice, SCOPE APIs also allow to set

the global scheduling policy for the whole network (set_scheduling).

The PHY-layer configuration can be tuned by setting the down-

link/uplink MCS of selected UEs, e.g., all the UEs of a certain slice

(set_mcs), which directly impacts on the signal modulation and

coding rate (see Section 3.1 and [2]). Additionally, the power level

of signals for selected UEs can be tuned as well (set_power). Finally,

SCOPE APIs allow interaction with the dataset generated by the

data collection module of the BSs (Section 3.2). Specifically, they

allow to read and get specific metrics values for any target time

window (read_metrics and get_metric).

Listing 1 shows an example where SCOPE APIs are used to

dynamically assign resources to each slice according to run-time

performance read from the dataset.

1. import scope_api as sc, time

2. while experiment_running:
3. wnd_metrics = sc.read_metrics(time_window)

4. for slice_id, slice_metrics in wnd_metrics.items():
5. slice_users = slice_metrics['ue']
6. slice_rbg = slice_metrics['rbg']
7. sc.set_mcs(slice_users, mcs_level, 'dl')

8. if slice_metrics['buffer'] > threshold:
9. sc.set_slice(slice_id, 'proportionally', slice_rbg + 2)
10. else:
11. sc.set_slice(slice_id, 'round-robin', slice_rbg - 2)

12. time.sleep(timeout)

Listing 1: Example of SCOPE APIs.

While a SCOPE experiment is running (line 2), the user calls the

SCOPE read_metrics API to read the performance metrics of each

slice from the generated dataset and for the specified time_window

(line 3). Metrics are stored in a dictionary (wnd_metrics) that can be

accessed iteratively (line 4). Users can call the SCOPE set_mcs API

to set a specific mcs_level for all UEs of the slice (line 7). Note that

SCOPE APIs also enable the selection of MCS levels for each UE.

Listing 1 also shows an example of how SCOPE users can imple-

ment control logic policies. For example, users can change sched-

uling and network slicing policies when the metrics reported in

SCOPE dataset meet certain conditions. For instance, if the size of

the transmission buffer (slice_metrics[’buffer’]) is above/below a

threshold (lines 8 and 10), the resources of each slice, e.g., schedul-

ing policy and allocated RBGs, can be changed accordingly (set_slice,

lines 9 and 11). Finally, the algorithm waits for a timeout (line 12)

before reading the metrics from the dataset again.

We note that the SCOPE APIs are a tool provided to users to

facilitate the reconfiguration of a variety of network parameters.

They are not the only way to access lower-layer information and

capabilities. Developers can still customize and modify the open-

source cellular code and access parameters not currently available

via the SCOPE APIs.

4 SCOPE EMULATION ENVIRONMENT

In this section, we detail SCOPE cellular emulation environment,

executed through Colosseum. A system overview is shown in Fig-

ure 2 where we distinguish between two main parts: (i) User domain,

and (ii) Colosseum domain.

User Domain. The user domain, running on the user local ma-

chine, is where researchers download the SCOPE container and use

its APIs to implement their custom algorithms (Section 3). Here,

SCOPE users interface with Colosseum to run their experiments
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Figure 2: SCOPE emulation environment.

and test their devised solutions in various emulation setups. Specif-

ically, users access Colosseum via a dedicated web GUI [14], se-

lect the SCOPE scenarios they want to run to evaluate their so-

lutions, and eventually visualize and process the obtained results.

Indeed, SCOPE allows to collect large amounts of data (e.g., through-

put, transmission queue status, Channel Quality Information (CQI),

PRBs allocated to each network slice, to name a few) that can be

leveraged to train ML/AI models, or to design novel optimization

and heuristic solutions for cellular applications.

Colosseum Domain. The operations executed on Colosseum

can be divided into two different phases: (i) The experiment config-

uration, and (ii) the experiment execution.

During the experiment configuration, users setup the experi-

ment to run on Colosseum. They select the desired RF and traffic

scenarios and the duration of the experiment. Among others, they

can specify which nodes act as BSs and which as UEs. After creating

a customized instance of SCOPE with user-defined control logic,

users can upload it on Colosseum. They now enter the experiment

execution phase, where the specified experiments are actually run.

Experiments can be scheduled and started through a web GUI.

Once the experiment begins, the user-customized SCOPE con-

tainer is automatically deployed on the corresponding SRNs, and

SCOPE RF and traffic scenarios of choice are executed by Colos-

seum Massive Channel Emulator (MCHEM) and Traffic Generator

(TGEN) (Section 4.1). User-defined control logic, e.g., any script

using SCOPE APIs to implement custom ML and/or optimization

algorithms, is also started at run time and the dataset module acts

as a feedback loop on the network performance and can be used to

evaluate the impact of control decisions on each node.

When the experiment is over, the scenario execution ends and all

the results collected during the experiment—stored in the metrics

and performance dataset—are transferred to the user directory on

Colosseum. This makes it possible to process results and save the

dataset for future applications.

4.1 Creating Cellular Scenarios

This section provides details on the inner workings of SCOPE cel-

lular scenarios. An overview of ready-to-use sample scenarios will

be given in Section 4.2. Each scenario (Figure 3) consists of two

macroblocks: The RF scenario and the traffic scenario.

Traffic Scenario

Traffic Type Traffic Direction
Traffic Flows

RF Scenario

Channel Base Station Location User Location

Cellular Scenario

OtherMobility

Traffic Scenario

Traffic Type
URLLC

eMBB
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Mobility
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Uplink

Bidirectional

Traffic Flows
All nodes

Subset of nodes

Figure 3: SCOPE cellular scenario components.

The RF Scenario specifies the channel conditions that each node

experiences in the experiment. For each SRN, the scenario defines

channel impulse responses that model path loss, fading and multi-

path effects. These channel coefficients are updated every millisec-

ond and can be generated in different ways. Colosseum supports sce-

narios with channel coefficients generated via analytical models, ray

tracing software or obtained via real-world measurements/channel

sounders. Coefficients are then fed to MCHEM, which applies the

corresponding channel taps to signals to/from each SRN.

To better understand how RF channels are emulated in Colos-

seum, Figure 4 depicts a high-level overview of theMCHEM channel

emulation procedures.

Colosseum Domain
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Figure 4: Emulation of RF scenarios via MCHEM.

When a signal x is generated by an SRN (e.g., open BS 1 in the
figure), this gets transmitted by the USRP X310 of the SRN and

received by the USRP X310 of MCHEM, which is connected to it

via low-noise and low-loss SMA cables (Figure 4). The latter sends

x to MCHEM Field Programmable Gate Arrays (FPGAs), where
signal processing operations occur. These FPGAs are fed with the

channel impulse responses corresponding to the RF scenario in use.
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Figure 5: Large-scale cellular scenario maps. The numbered blue circles mark the locations of the BSs on the map.

These impulse responses, namely hk ,m , where k,m ∈ [1,M] are the

transmitting and receiving nodes, andM is the number of nodes in
the experiment, are convoluted to x by the FPGAs via Finite Impulse
Response (FIR) filters. The resulting signalsyk ,m = x∗hk ,m are then
transmitted to the corresponding SRNs. It is worth mentioning that

MCHEM forwards the convoluted signals yk ,m to multiple SRNs
and not just the intended receiver (Figure 4). In this way, Colosseum

makes it possible to emulate interference among every node, akin

to what would happen in an over-the-air cellular deployment.

Since channel conditions vary based on the location of the nodes,

RF scenarios specify the position of each node for each instant

of time (Figure 3). This makes it possible to run experiments on

different cellular deployment configurations that mimic real-world

cellular topologies. The location of the BSs can be specified via

GPS coordinates, which can be either generated randomly, through

statistical models, or derived from open-source 4G/5G datasets such

as OpenCelliD [49]. Similarly, the location of UEs can be specified

via GPS coordinates according to diverse probability distributions

(e.g., uniform, normal), or historical data from TOs, if available.

Additionally, scenarios can specify usermobility, which in SCOPE

can be static, i.e., the users do not move for the entire duration of

the experiment, or dynamic, in which case the mobility model and

speed can also be specified. Finally, RF scenarios allow to select the

size of the emulated environment and RF frequency.

The Traffic Scenario specifies and configures the traffic flows

among BSs and UEs (Figure 3). Traffic scenarios are handled by

the Colosseum TGEN, which is built on top of Multi-Generator

(MGEN), an open-source software that generates and controls real-

istic TCP/UDP traffic [50]. MGEN supports a variety of different

classes of traffic with diverse QoS requirements, probability dis-

tributions, data rates and types of service. In this way, MGEN can

be used to generate Ultra Reliable and Low Latency Communica-

tion (URLLC), enhanced Mobile Broadband (eMBB) and Massive

Machine Type Communications (mMTC) traffic, which SCOPE can

assign to different slices of the network and control independently

(Section 3).

4.2 Sample Scenarios

In this section, we give an overview of sample SCOPE cellular sce-

narios in three different urban setups: (i) Rome, Italy; (ii) Boston,

U.S., and (iii) Salt Lake City, U.S. (POWDER scenario). SCOPE

cellular scenarios have been thoroughly designed leveraging the

toolchain developed and validated by DARPA for the Colosseum

network emulator. The very same toolchain has been used to create

the scenarios of the Spectrum Collaboration Challenge, a $2M com-

petition to foster collaboration in the wireless spectrum [18]. For the

Rome and Boston scenarios, the locations of the BSs reflect real cell

tower deployments extracted from the OpenCelliD database [49].

In the POWDER scenario, they mirror those of the rooftop BSs

deployed in the Salt Lake City platform [40]. Each scenario includes

from 8 to 10 BSs and up to 40 UEs, whose location and mobility can

be selected by SCOPE users when setting up an experiment. We

considered the following UE distribution configurations: (i) Close

(UEs are randomly distributed within 20 m from the serving BS);

(ii) medium (50 m), and (iii) far (100 m). We implemented three

different mobility configurations: (i) Static, in which UEs do not

move for the entire duration of the experiment; (ii) moderate, in

which they move at an average speed of 3 m/s, and (iii) fast, in

which their average speed is 5 m/s. In all the cases with mobility,

UEs follow a random waypoint mobility model.

A graphical overview of SCOPE sample cellular scenarios is

given in Figure 5, in which the numbered blue circles represent the

locations of the cellular BSs on the map:

• The Rome scenario captures the dynamics of the city center of

Rome, Italy. A total of 50 nodes are involved: 10 BSs and 40 UEs.

This is the most dense scenario we developed in Colosseum and it

covers an area of 0.5 km2 (Figure 5a).

• The Boston scenario captures the dynamics of downtown Boston,

U.S. A total of 50 nodes are involved: 10 BSs and 40 users. This

scenario covers an area of 0.95 km2 (Figure 5b).

• The POWDER scenario mirrors the setup of the rooftop BSs de-

ployed in the POWDER platform in Salt Lake City, U.S. [40]. A total

of 40 nodes are involved: 8 BSs and 32 UEs. This scenario is the

sparsest with an area of 3.6 km2 (Figure 5c).

Along with the RF scenario, we designed relevant traffic sce-

narios (Section 4.1). Given the ever-increasing popularity of video

streaming platforms, we leveraged TGEN and MGEN to generate

dedicated traffic scenarios that model uplink and downlink video

streaming traffic flows among UEs and BSs.
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4.2.1 Scenario Analysis. We now show results obtained by exe-

cuting SCOPE in the above scenarios focusing on (i) providing

insights on how different topologies, distributions and mobility pat-

terns affect network performance, and (ii) showcasing the statistical

properties of SCOPE experiments.

To better highlight the major differences among the above sce-

narios, we consider the default SCOPE configuration where all UEs

generate the same type of traffic, belong to the same slice, and are

served via a round-robin scheduling algorithm (see Section 5 for

more use cases). For each scenario, we measured downlink/uplink

throughput and spectral efficiency for different distances and mo-

bility configurations.

Overview of a SCOPE experiment. To give a better understand-

ing of what running SCOPE experiments looks like, we first show

results pertaining single experiment runs (one for each distance

among BSs and UEs) in the Rome scenario with static UEs. The con-

sidered distances are: Close, medium, and far, as described earlier

in this section.

Figure 6: Downlink (DL) and uplink (UL) throughput in the Rome

static scenario.

The measured downlink and uplink throughput is shown in Fig-

ure 6. As the distance among BSs and UEs increases, the gap among

the downlink throughput of different BSs (top part of Figure 6)

becomes larger. This is due to channel artifacts, e.g., path loss and

fading, which become more significant at greater distances among

UEs and BSs. Similarly, the uplink throughput (bottom part of Fig-

ure 6) decreases as the distance between BSs and UEs increases.

Statistical analysis. To illustrate the statistical properties of

SCOPE experiments, and demonstrate how results do not vary

significantly across multiple experiment repetitions. we performed

more than 60 repetitions (> 10 hours) varying the distance among

BSs and UEs, and the mobility of UEs.

To present our results, we resort to violin plots, which show

both the Probability Density Function (PDF) and distribution of the

data measurements across several realizations (shaded areas in the

figures), as well as their median (white dots). The black boxes show

the 95% confidence intervals.

• Static case. Results for static cellular scenarios are shown in Fig-

ure 7. In this case, UEs do not move but they are placed at different

distances from the BSs (close, medium and far).

(a) Downlink spectral efficiency

(b) Uplink spectral efficiency

Figure 7: Spectral efficiency in the static scenarios.

Metrics for downlink and uplink performance are shown in

Figures 7a and 7b, respectively. As expected, the spectral efficiency

decreases for both downlink and uplink as the UEs are placed

further away from the BSs. However, despite few outliers, in all

cases the data are distributed around the median (white dots in the

figures), and exhibit tight 95% confidence intervals (black boxes).

• Dynamic case. Figure 8 shows the above metrics in the case of

mobile nodes (static, moderate, and fast UE mobility).

(a) Downlink spectral efficiency

(b) Uplink spectral efficiency

Figure 8: Spectral efficiency in the dynamic scenarios.

The downlink performance is shown in Figure 8a; Figure 8b

shows the uplink performance. Since the higher the speed, the

more likely UEs are to move away from the serving BS, we observe

a drop in performance as the speed increases. However, as for

the static case (Figure 7), data are distributed around the median
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(white dots) with small 95% confidence intervals (black boxes). This

demonstrates that several realizations of the same experiments

achieve comparable results.

5 SCOPE USE CASES

In this section, we discuss relevant SCOPE use cases and examples

of interest to the research community ranging fromML (Section 5.1)

to traditional optimization control techniques (Section 5.2). We also

demonstrate how SCOPE can be ported seamlessly on heteroge-

neous testbeds such as Arena [4] and POWDER [10] (Section 5.3).

5.1 Machine Learning

Our first use case is that of a researcher utilizing SCOPE to im-

plement ML-based control algorithms for cellular networks (see

Figure 9). In the user domain, ML/AI algorithms are designed and

UUser Domain Colosseum Domain

AI/ML

From

Colosseum

DatasetFederated 

Combiner

Scenario A

Training Scenarios

Scenario B

Scenario C

Scenario D

Scenario X

Testing Scenarios

Scenario Y

Untrained 
Neural Network

Trained
Neural Network

Output

Collected metrics 
and performance Trained

neural networks

Train model on 

diverse scenarios

Test on unseen 

scenarios

Deploy 

algorithm

Satisfactory?

Fine-tune 

algorithm

Yes

Design AI/ML 

algorithm

No

Figure 9: Machine learning use case.

interfaced with SCOPE through its open APIs (Section 3). The result-

ing version of the SCOPE container, which includes the user-defined

control logic, is then transferred to Colosseum, where it is used to

run experiments. Being able to run experiments on multiple scenar-

ios enables a variety of ML applications. For example, researchers

can train multiple copies of the same neural network on a subset of

the available scenarios (training scenarios in Figure 9) leveraging

the metrics and performance dataset generated by SCOPE. Then,

they can use federated learning techniques to combine weights and

develop more general models [53].

After the training is completed, the neural networks can be

tested on a completely different and unseen set of scenarios (testing

scenarios in the figure). This makes it possible to validate the gener-

alization capabilities of the trained model and eventually fine-tune

its weights, if necessary. Finally, after the devised algorithms work

as expected, the model can be exported from SCOPE and deployed

on production cellular networks or any other LXC-enabled testbed.

SCOPE for Deep Reinforcement Learning. To provide a prac-

tical example of how SCOPE can be used to prototype machine

learning algorithms, we implemented a simple yet effective Deep

Reinforcement Learning (DRL) algorithm [31, 35] using SCOPE

container and scenarios. As shown in Figure 10, we trained a Deep

Q-Network (DQN) agent—a well-established DRL solution for prob-

lems with discrete actions [34]—that reads periodically the metrics

stored in the BS dataset and adapts slicing and scheduling strategies

at run time to maximize the network throughput. In this case, each

BS of the network hosts a dedicated DRL agent.

SCOPE Container

Open eNBAPI

SCOPE Container

Open eNBAPI

SCOPE Container

Open BS

Slicing

Scheduling

Metric Reports

DQN Agent

Dataset

API

set_slice

read_metrics

D

Figure 10: Deep Q-Network agent.

We considered a network with two different slices. The agent

is required to select how many PRBs to allocate to each slice and

which scheduling algorithm should be used to serve the UEs of

the slice. The actions taken by the agent are then enforced via

SCOPE (Figure 10), which reconfigures the BSs in real time. The

state of the agent is generated by periodically reading the dataset

entries corresponding to the most recent 10 s of the experiment

(this frequency can be tuned as appropriate). These are then fed to

the encoding portion of an autoencoder trained to create a latent

representation (and thus with lower dimension) of the state of the

system [52]. Due to space limitations, and since this is not the focus

of this paper, we refrain from providing a detailed description of

the DQN and autoencoder implementations.

We consider two different control configurations. In the first one,

the agent makes decisions on the scheduling policy of each slice

only. In the second, the agent controls both slicing and scheduling

policies. First, we report the downlink throughput measured during

the training of the agent (Figure 11) under the first configuration.

Then, we show the number of packets to be transmitted to the UEs,

PRBs and scheduling policy of each slice, and spectral efficiency

for the two configurations (Figures 12 and 13). Finally, we compare

the trained DQN agent with the case in which static scheduling

policies are adopted by the network (Figure 14).

Figure 11: Downlink throughput of the DQN agent as a function of

the training time with scheduling decisions only.
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Recall that, at the beginning of the training, the agent is initial-

ized with random weights. As shown in Figure 11, this means that

actions computed in the first few epochs are taken at random and

are generally sub-optimal. As the training goes on, the agent learns

how to effectively select strategies that achieve higher throughput

values. After 2 hours of training, for instance, the agent is already

capable of selecting actions that result in improved performance.

Figure 12 shows the results obtained when we test the DQN

agent previously trained to make scheduling decisions for each

slice only (i.e., no decisions on resource allocation).

(a) Downlink packets (b) Scheduling algorithm

(c) Downlink spectral efficiency

Figure 12: Machine learning use case with scheduling decision poli-

cies.

At the beginning of the testing experiment, the trained DQN

agent selects the round-robin (RR in the figure) and waterfilling

(WF) scheduling algorithms for slices 1 and 2, respectively. As the

number of packets for the UEs of slice 1 increases (solid red line in

Figure 12a), the agent changes the scheduling policy of the slice

from round-robin to a fairer waterfilling (t1, Figure 12b). This action
allows the network to maintain a good level of spectral efficiency

(Figure 12c). On the other hand, the scheduling algorithm of slice 2,

which sees a 20 s decrease in the packet arrivals for the UEs (dashed

blue line in Figure 12a) is changed from waterfilling to round-robin,

and changed back to waterfilling shortly after. Finally, as the burst

of packets for the UEs of slice 1 ends, the scheduling policy of the

slice is changed back to round-robin (t2). We observe that the brief
decrease in the spectral efficiency of slice 2 (Figure 12c) corresponds

to a short time window with fewer packet arrivals (see Figure 12a).

Results obtained by testing on Colosseum the DQN agent trained

to control both scheduling and slicing policies are shown in Fig-

ure 13. The DQN agent makes decisions on both PRB allocation,

which affects the resources of the slices (Figure 13a), and scheduling

policy (Figure 13b) of the two slices. Both decisions reflect on the

downlink spectral efficiency (Figure 13c), which the agent tries to

balance between the two slices.

When the testing experiment starts, both slices are served via

the waterfilling scheduling algorithm (WF in Figure 13b). Then,

(a) PRB allocation (b) Scheduling algorithm

(c) Downlink spectral efficiency

Figure 13: Machine learning use case with scheduling and slicing

decision policies.

at time instant t1, the DQN agent observes the state of the net-
work and modifies the resource allocation of each slice. As a result,

the PRBs of slice 1 are increased, while those of slice 2 decreased

(Figure 13a). Additionally, the agent selects the proportionally fair

scheduling algorithm for both slices (P in Figure 13b). On the one

hand, this causes the downlink spectral efficiency of slice 1 to in-

crease (Figure 13c). On the other hand, slice 2 achieves the same

spectral efficiency utilizing fewer resources. Similar decisions are

made throughout the experiment to balance the spectral efficiency

of the two slices. Finally, at time t2, the DQN reallocates the PRBs
of the two slices (11 PRBs for slice 1, and 4 for slice 2, recall that the

BS uses 15 PRBs), and sets their scheduling policies to round-robin

(RR in Figure 13b). This results in the two slices achieving similar,

i.e., fair, levels of spectral efficiency.

Figure 14: Downlink throughput of the DQN agent with scheduling

decisions vs. fixed scheduling policies.

Finally, Figure 14 compares the network performance obtained

running the DQN agent with scheduling decisions with that of

the network running round-robin, waterfilling and proportionally

fair scheduling policies. We notice that the sequential decision

making of the DQN agent allows it to improve the overall downlink

throughput with respect to fixed scheduling policies, thus adapting

to the varying channel and traffic conditions.
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5.2 Optimization and Heuristics

A major issue with many optimization algorithms and heuristics

is that they often rely upon analytical models, assumptions and

approximations that do not accurately reflect the real network be-

havior. SCOPE can help researchers refine these models and assess-

ing their accuracy in real-world applications. A possible use case is

shown in Figure 15. Similar to the ML use case (Section 5.1), SCOPE

can be customized to include optimization- and heuristic-based con-

trol logic. This control logic can leverage SCOPE to interface with

the BSs and control their configuration at run time. The customized

container can then be uploaded to Colosseum and used to test differ-

ent optimization/heuristic objectives. At the experiment run time,

the user algorithms can leverage SCOPE metrics and performance

dataset to have a feedback on the behavior of the network. Deci-

sions can be made on the policies of the network (e.g., scheduling

and slicing), with subsequent run-time reconfiguration of the BSs.

Finally, when the user policies reach a satisfactory behavior, they

can be reliably deployed on commercial cellular networks.

For the sake of illustration, in Figure 16 we show the downlink

buffer size and throughput obtained by implementing a heuristic

algorithm on SCOPE. We consider the case in which BSs serve three

slices with different classes of traffic, UEs and QoS requirements:

(1) One UE generating URLLC traffic with low-latency require-

ments; (2) two UEs with eMBB traffic with high data rates, and

(3) one UE generating mMTC traffic with loose latency and data

rate requirements.

The heuristic algorithm periodically reads data from SCOPE

dataset and tunes the slice resources accordingly. Slice 1 (URLLC)

is given additional resources when the BS has more packets to

transmit to the UEs (i.e., when the size of the transmission buffer

increases) to enable prompt communications. On the other hand,

slice 2 (eMBB) is allocated more resources when the available band-

width of the slice saturates. Finally, due to its loose performance re-

quirements, slice 3 (mMTC) is served with fixed scheduling policies

and is allocated two PRBs for the entire duration of the experiment.

As soon as the experiment starts, there is a surge in the traffic

of slices 1 and 2, which causes an increase in the downlink buffer

(Figure 16a). Following the above policy, resources of both slices

are increased at time t1 to prevent congestion of the transmission
buffers. Additionally, the scheduling policy of slice 2 is also changed

from round-robin to a fairer waterfilling. Because of this, at time t1
we observe a prompt decrease in the buffer size of both slices and

an increase of throughput (Figures 16a and 16b, respectively).

(a) Downlink transmit buffer

(b) Downlink throughput

Figure 16: Optimization use case for different classes of traffic:

URLLC (slice 1), eMBB (slice 2), and mMTC (slice 3).

5.3 SCOPE Portability

In this section we illustrate how SCOPE can be ported to different

testbeds. We start by prototyping an instance of SCOPE with 8 BSs

serving 32 UEs on Colosseum. We then port it to Arena [4]—an

indoor office testbed—and POWDER [10]—an outdoor large-scale

platform part of the PAWR program [39]. In both testbeds the BS

serves 2 UEs located at an average distance of 4.5 m for Arena, and

345 m for POWDER. In Arena the antennas of all devices (USRPs

X310) are at the same height (hung off the ceiling); in POWDER

the BS (USRP X310) is located on the rooftop of a 30m-tall building

and serves ground-level UEs (USRPs B210).

Since SCOPE uses virtualized LXC containers, porting it to dif-

ferent testbeds involves transferring the container to the target

testbed, and configuring LXC to bridge the interfaces of the host

machine to the container [12]. As in SCOPE the actual communica-

tion with the hardware radio is left to srsLTE, different SDRs can

be used by installing the required drivers [46].

In this experiment, we measure the average downlink spectral

efficiency of the BSs. Results are shown in Figure 17.

Figure 17: Downlink spectral efficiency of SCOPE ported on three

different testbeds: Colosseum, Arena and POWDER.
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We notice that SCOPE achieves performances showing similar

trends in three very different experimental facilities: A wireless emu-

lator, an indoor testbed and a large-scale outdoor platform. We also

observe that SCOPE not only adapts to diverse environments, but

also to different numbers of UEs. This demonstrates the feasibility

and effectiveness of prototyping solutions with SCOPE on Colosseum

before testing them in the field.

6 RELATEDWORK

We are aware of only a handful of works concerning network slicing

implementations for srsLTE-based cellular networks. Garcia-Aviles

et al. propose a multi-slice service-orchestration framework [23]

and implement it on a small-scale prototype [24], while Ayala-

Romero et al. devise a deep learning approach for joint allocation

of computational and radio resources [3]. Furthermore, D’Oro et

al. proposed a multi-access edge computing (MEC) framework for

resource orchestration on heterogeneous network slices [21], and

demonstrated optimal network slicing solutions for small-scale 5G

network deployments [20].

A proof of concept of RAN slicing on the 5G-EmPOWER plat-

form is given by Coronado et al. [16]. Although this work offers

interesting insights, the provided implementation considers only

a single BS and two UEs. Koutlia et al. describe an experimental

testbed with slicing support [30]. The focus of this work is pri-

marily on policy enforcement, slice provisioning and admission

control. Moreover, slices are statically allocated and they cannot be

reconfigured at run time.

Finally, a centralized and cloud-based slicing framework based on

network function virtualization is developed byMarinova et al. [33].

While network parameters can be reconfigured at run time, this

comes at the cost of restarting and redeploying the network BSs and

subsequent re-attachment of UEs. This operation requires a network

downtime tens of seconds long, hardly acceptable given the sub-

millisecond latency requirements of NextG networks. Furthermore,

no open APIs are offered to interface user-defined control logic.

Table 2 provides a high-level comparison of the capabilities of

the main SDR-enabled testbeds for NextG experimental research.

Table 2: SDR-enabled NextG testbeds.

Testbed NextG Capabilities Software Deployment

Arena sub-6 GHz RAN & core Large-scale office

Colosseum
sub-6 GHz,

NFV/orchestration
RAN & core,
O-RAN

Large-scale,
programmable

CORNET sub-6 GHz RAN & core Large-scale indoor

COSMOS
sub-6 GHz, mmWave,
NFV/orchestration

RAN & core,
O-RAN

Indoor,
city-scale outdoor

Drexel Grid sub-6 GHz RAN & core
Large-scale indoor,
virtual nodes

FIT testbeds
sub-6 GHz,

NFV/orchestration
RAN & core,
OSM

Large-scale indoor

IRIS
sub-6 GHz, cloud-RAN,
NFV/orchestration

RAN & core Large-scale indoor

NITOS
sub-6 GHz,

NFV/orchestration
RAN & core,
OSM

Large-scale indoor
and outdoor, office

POWDER
sub-6 GHz,

NFV/orchestration
RAN & core,
O-RAN

Indoor,
city-scale outdoor

SCOPE sub-6 GHz RAN & core
Large-scale,
programmable

Arena [4], CORNET [15], and Drexel Grid [17] focus on sub-

6 GHz RAN and core network applications in large-scale indoor se-

tups [5, 7, 21, 42]. Colosseum [14], COSMOS [43], the FIT testbeds [22],

NITOS [36], IRIS [28], and POWDER [10], instead, also encom-

pass Network Function Virtualization (NFV) and orchestration

through frameworks such as O-RAN and Open Source MANO

(OSM) [6, 29, 37] (with COSMOS and IRIS also having mmWave

and cloud-RAN capabilities, respectively). As for the deployment

of the radio nodes, these testbeds target large-scale (city-scale for

COSMOS and POWDER) indoor or outdoor setups. However, exper-

iments run on them are constrained to the physical deployment of

the testbed SDRs. The only exceptions are the Drexel Grid testbed,

which includes a set of virtual nodes that interact with the physical

ones, and Colosseum, which allows to emulate different wireless

environments and setup with hardware-in-the-loop.

Finally, SCOPE positions itself as a prototyping platform for sub-

6GHz NextG solutions that complements the above testbeds by pro-

viding open APIs for real-time reconfiguration of cross-layer RAN

functionalities along with a portable and platform-independent

containerized implementation. If instantiated on the above testbeds,

SCOPE is able to target indoor and outdoor wireless deployments

by seamlessly adapting to their underlying physical infrastructure.

Looking at the broader NextG scene, in the last few years several

industry consortia have been focusing on developing solutions to

redesign and revolutionize cellular networks. The most noteworthy

of these efforts is O-RAN, which disaggregates network functional-

ities and enables their virtualized execution on different hardware

components [38]. This is done through O-RAN RAN Intelligent

Controller (RIC), which enables centralized control of the RAN at

different time scales and granularities. This component can also

host third-party applications, called xApps, which interact with the

RAN APIs to control the 3GPP Central Units (CUs) and Distributed

Units (DUs) [1, 8]. It is worth mentioning that SCOPE is O-RAN-

ready. Indeed SCOPE APIs can seamlessly interface with the RAN

by using similar routines and structures as the ones defined for

O-RAN xApps, and control the network elements at run time [6].

7 CONCLUSIONS

We presented SCOPE, a development environment for softwarized

and virtualized NextG cellular networks. SCOPE provides: (i) A

ready-to-use portable open-source cellular container with flexible

5G-oriented functionalities; (ii) data collection tools, such as dataset

generation functions for recording cellular performance and met-

rics, and for facilitating data analysis; (iii) a set of APIs to control

and reprogram key functionalities of the full cellular stack at run

time, without requiring redeploying the network, and (iv) an emula-

tion environment with diverse cellular scenarios closely matching

real-world deployments for precise prototyping NextG network

solutions. We showcased SCOPE usage in the Colosseum network

emulator and demonstrated its flexibility by porting it to real-world

testbeds, both indoor (Arena) and outdoor (POWDER). Researchers

can use SCOPE to design, implement and test novel control so-

lutions on large-scale real-world cellular scenarios with different

topologies, mobility patterns, channel and traffic characteristics.

Finally, we discussed how SCOPE can be used for practical proto-

typing of ML, optimization and heuristic algorithms.
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