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Abstract
Recent underwater sensor network research has focused

on developing physical, medium access control, and network
layer protocols to enable high data rate, energy-efficient and
reliable acoustic communications. However, it is now essen-
tial to design and standardize architectures that will enhance
the usability and interoperability of underwater networks.

This paper proposes a networking architecture to effi-
ciently provide interoperability with traditional TCP/IPpro-
tocol stacks for commercial underwater modems. The pro-
posal is based on an adaptation layer located between the
data link layer and the network layer, such that the origi-
nal TCP/IP network and transport layers are preserved un-
altered to the maximum extent. The adaptation layer per-
forms header compression and data fragmentation to guar-
antee energy efficiency. Furthermore, the proposed archi-
tecture includes mechanisms for auto-configuration based on
router proxies that can avoid human-in-the-loop and save en-
ergy when broadcast is needed. The proposed architectural
framework was implemented as a Linux device driver for a
commercial underwater network modem SM-75 by Teledyne
Benthos. Testing and simulation results illustrate that the ar-
chitecture efficiently provides interoperability with TCP/IP.

1 Introduction
Underwater networks have been the object of intense re-

search by the communications, signal processing, and net-
working communities in the past few years. Protocols at
different layers have been designed to meet the challenges
of underwater networking [1]. However, underwater devices
can not yet be regarded as citizens of the traditional network-
ing realm because of their limited interoperability with ex-
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isting networks based on the TCP/IP architecture. A similar
situation was also experienced by wireless sensor networks,
until IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) [2] became part of the Internet suite of stan-
dardized protocols. It is now essential to design, deploy, and
test a standardized protocol stack that can efficiently provide
interoperability for underwater networking devices.

While one can envision a scenario where users can
address and access underwater nodes from any Internet-
connected terminal, including workstations or smartphones,
as of today existing underwater acoustic sensor network
(UW-ASN) cannot be reconfigured or reprogrammed once
the modems have been deployed. On the contrary, with sup-
port for the TCP/IP protocol stack, applications such as FTP
and SSH could be utilized to reconfigure the network. Simi-
larly, monitoring applications (e.g., traceroute) could also be
used to diagnose network problems.

There are several challenges that need to be addressed to
provide smooth interoperability with TCP/IP networks. Un-
derwater networks are in fact unique in that they combine the
challenges of severely limited resources of wireless sensor
network (WSN) and very long propagation delays of delay-
tolerant networks (DTN) [3]. The main challenges from a
protocol perspective lie in the following aspects:

• The long propagation delays of underwater networks
[1] require protocols to be delay-tolerant. However,
TCP/IP is not designed to be such.

• Compared to traditional RF wireless devices, under-
water modems consume much more energy for trans-
mission than for reception and idle listening [4]. In-
stead of the traditional energy consumption structure
ET >ER ≈EL > EP, whereET , ER, EL andEP represent
the energy consumption for transmitting, receiving, idle
listening and processing, the energy consumption struc-
ture is likeET ≫ ER ≈ EL > EP. Since batteries are, in
many cases, not rechargeable, energy saving is a high
priority. Therefore, architectural principles should be
informed by energy saving schemes designed based on
these premises.

• TCP/IP is designed for reliable channels and high-
performance communication. However, the underwa-
ter channel is time-varying and demands robust and
channel-aware packet routing, forwarding and fragmen-
tation schemes.



Existing protocols solve some of the aforementioned
challenges through ad-hoc design. However, most of them
regard the underwater network as a system isolated from the
Internet. Tunneling at a border router is usually required and
assumed implicitly to bridge protocols on both sides. How-
ever, tunneling results in unnecessary overhead and may de-
grade the performance due to inconsistency between proto-
cols and lack of full session information, e.g., information
about congestion and delay. Moreover, existing protocols
use proprietary addressing schemes. As a consequence, tra-
ditional devices can not access underwater nodes with exit-
ing tools based on TCP/IP protocols.

To address these problems, Hui et al. [5] proposed the
6LoWPAN architecture for wireless sensor network, which
provides an IPv6 protocol stack for resource-constrained de-
vices. 6LoWPAN provides a solution for header compres-
sion, data fragmentation and auto-configuration. However,
Hui’s architecture is designed for terrestrial networks and is
not optimized for the underwater energy consumption struc-
ture. Moreover, the data fragmentation that fits the long IPv6
packet (at least 1280 Bytes) into fixed-sized IEEE 802.15.4
frames (127 octets) is not suitable for time-variant under-
water channels. The high propagation delay of underwater
networks and the channel characteristics require optimized,
channel-dependent frame size to increase channel utilization
and energy efficiency [6, 7].

Another candidate architecture, delay-tolerant network-
ing (DTN) was proposed by Fall et al. [3]. DTN is de-
signed to tackle high latencies and disconnections. However,
the introduction of an adaptation layer between application
layer and transport layer makes it difficult to store state in-
formation from physical layer and the medium access con-
trol (MAC) layer, so that it is impossible to guarantee energy
efficiency.

Therefore, we propose a novel architecture designed to
address the aforementioned problems. The major contribu-
tions of this paper are as follows:
• We propose a network architecture for underwater

acoustic sensor networks. The architecture is fully com-
patible with the traditional TCP/IP protocol and sup-
ports both IPv4 and IPv6.

• We propose a software architecture that cooperates with
existing operating systems and can be easily reconfig-
ured to cooperate with different underwater modems.

• The proposed architecture is optimized for underwater
networks by introducing header compression, data frag-
mentation and router proxy.

The rest of the paper is structured as follows. Related
work is discussed in Section 2. We introduce the system ar-
chitecture and some basic assumptions in Section 3. Sections
4, 5, 6 and 7 discuss different aspects of the adaptation layer
design, including frame size optimization, header compres-
sion, fragmentation, neighbor detection, autoconfiguration,
routing and forwarding. Finally, performance evaluation re-
sults are discussed in Section 8.

2 Related Work
An increasing number of protocols have been proposed

for underwater networks in the past ten years. However,

most of them focus on designing protocols and algorithms
at the data link or network layer without considering the
whole protocol stack. Moreover, existing protocols are usu-
ally application-specific. For example, oceanographic data
collection sensor networks usually assume a static topology
and are delay insensitive, while disaster prevention systems
are optimized for rare communication but delay sensitive
cases. Also, the core challenges of network discovery, nam-
ing, addressing, configuration and diagnosing are not thor-
oughly discussed in recent underwater networking research.

Providing interoperability with the Internet requires an ar-
chitectural framework. Candidate architectures include IP
over 802.15.4 [5] and DTN [8]. Hui et al. proposed a
6LoWPAN-based wireless sensor network architecture that
brings IPv6 to 802.15.4 networks [5]. The core idea of
6LoWPAN is to fragment long IPv6 packets to fit in much
smaller 802.15.4 frames as well as compressing the transport
and network layer headers. We use similar compression and
fragmentation methods to create a frame format better suited
for the underwater scenario. Furthermore, we enhance per-
formance and efficiency for underwater channels by finding
the optimal packet size through mathematical optimization
techniques.

The DTN architecture introduces a robust solution to ad-
dress long delays and predictable disconnections. The core
of this architecture is the Bundle Protocol [9], which is an
adaptation layer between the application layer and the trans-
port layer. However, higher layer protocols cannot easily
gather and leverage information from the physical and data
link layers, which may lead to poor performance in under-
water networks. Also, the requirements of application-layer
softwares and the unique Endpoint Identifiers (EID) limit the
interoperability of the architecture, which is again not de-
signed for energy saving.

SEAWEB [10] is an existing experimental deployment of
underwater networks. It defines its physical, link and net-
work layers of underwater network. However, the system
uses a specialized repertoire of communication gateways,
which significantly limit its interoperability. SEAWEB re-
quires human intervention to setup and monitor the system
at the gateway. On the contrary, we propose an architecture
that interfaces and makes the underwater network remotely
accessible from the Internet.

3 System Architecture
We consider underwater networks composed of underwa-

ter nodes and border routers. Border routers are specialized
nodes that are carried on ships, on buoys or onshore and pro-
vide Internet connectivity through cellular or satellite com-
munications. Underwater nodes are responsible for collect-
ing, processing and transmitting data, and can be configured
and accessed from remote hosts. Border routers operate at
the network layer and bridge the underwater sensor network
segment with the traditional IP-based network.

There may be multiple border routers in an underwater
network. We assume that each node is able to find the best
border router, i.e, the border router that leads to minimal en-
ergy consumption. Hence, underwater nodes may be natu-
rally divided into subnets based on different physical layer
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protocols or different border routers they are connected to.
Dividing the network into subnets may save energy and re-
duce delay by limiting the maximum number of underwater
hops. Furthermore, diagnosing may be made easier because
errors are limited to one subnet and are therefore easier to
locate.

3.1 Interior Network Abstraction
Since underwater sensor networks are usually sparsely

deployed, a node may not be able to communicate with the
border router through a direct acoustic link. Even if a node
is within transmission range of a border router, forwarding
through an intermediate node can significantly reduce energy
consumption and interference to other nodes. Therefore, all
nodes cooperate to route and forward data packets to the bor-
der router through multi-hop routes.

Different from IP routing, routing in the underwater sub-
net, which is performed beneath the network layer, is also
defined as “mesh routing” or “layer-2” routing. The layer
beneath the network layer maintains its own neighboring and
routing tables and forwards data packets to the correspond-
ing next hop. After a packet arrives at the destination, the
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Figure 3. Layered Network Architecture.

packet is handed over to the network layer and the network
layer may process it or forward it to another node. Mesh
routing is combined with traditional routing at the border
router, and packets are forwarded at the network layer to the
next hop. We use the term “L2 Hop” to describe a mesh
routing hop, where the source and destination are within
each other’s acoustic transmission range, and “L3 hop” to
describe the traditional IP-level forwarding hop. Thus, from
the network layer perspective, at each underwater node there
is avirtual link established between the node and the border
router, as illustrated in Fig. 2. Therefore, the data link layer
regards only nodes within acoustic signal range as neighbors,
while the network layer ignores nodes on the path and only
treats the border router as a neighbor.

The introduction of mesh routing keeps clean and sim-
ple neighboring and routing tables at the network layer since
most of the nodes only have information on the border router.
At the same time, any routing algorithm at the data link layer
can be implemented according to application requirements.
From the network layer perspective, this is similar to a typ-
ical Wi-Fi segment, where an Access Point provides Inter-
net connectivity to all the terminals in the subnet. From the
perspective of the data link layer, the whole system is a typ-
ical underwater sensor network and application specific pro-
tocols and algorithms can be adopted.

3.2 Network Architecture
The system follows the traditional TCP/IP five-layer

model. Our objective is to design a network architecture
compatible with different physical and data link layer pro-
tocols. An adaptation layer is therefore inserted to interface
the traditional IP network layer with a custom designed link
layer. The adaptation layer serves as the core of the architec-
ture. It is responsible for header compression, packet frag-
mentation, mesh routing and broadcast emulation. By utiliz-
ing cross layer header information, the long IPv4 or IPv6
header can be shortened, thus significantly saving energy
when maintaining connectivity or exchanging information
with small packets. For longer packets, fragmentation guar-
antees energy efficiency by balancing header overhead and
retransmission overhead. Mesh routing is also performed at
this layer and a packet is forwarded at intermediate nodes.
Also, routing information exchange, such as router adver-



Figure 4. Software Implementation Architecture.

tisement, requires the capability of broadcasting over oneL3
hop. To emulate L3 broadcast, nodes serve as router proxies
to pass router information to terminals.

The architecture is designed to maintain the traditional
TCP/IP protocol stack unaltered. In this way, the whole ar-
chitecture can easily inter-operate with existing platforms.
Thus, the network layer is kept unchanged and is respon-
sible for L3 routing. Internet Control Message Protocol ver-
sion six (ICMPv6) provides plenty of control and diagnosing
functions as well as neighbor and router discovery capabili-
ties. ICMP plus Address Resolution Protocol (ARP) can do
similar work in an IPv4 environment. ICMP protocols works
together with application layer DHCP or DHCPv6 protocols
to provide auto-configuration. Moreover, the transport layer
also provides user applications with TCP or UDP sockets.
3.3 Software Architecture

We implemented the proposed architecture as a Linux
driver as shown in Fig. 4. Since we do not modify the
TCP/IP transport and network layers, we benefit from the
robustness of the Linux networking core. Data packets from
the application layer are handled by the transport and net-
work layers in the Linux kernel before they are passed to the
adaptation layer. Our driver works at the adaptation layer and
is divided into two parts. The driver part runs in Kernel mode
and is responsible for device-independent functions such as
fragmentation, router proxy and header compression. A sec-
ond driver component runs in user mode so that it can be eas-
ily reconfigured to communicate with devices from different
vendors. The inter-process communication (IPC) between
these two components is achieved through Netlink Socket
[11]. The data-link layer may be either defined in the dae-
mon or in the modem itself.

By dividing the system driver into two parts, we provide
the architecture with the flexibility to operate on different
devices while at the same time keeping the architecture de-
sign coherent. The kernel portion of the driver is device-
independent, and therefore the adaptation layer and higher
layer protocols remain the same no matter what modem is
used. Instead, the device-dependent part of the driver runs
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Figure 5. Frame Header Compression.

in the user space. Thus, it can be designed based on high
level programming languages without the need to consider
the complex challenges of Kernel programming.

4 Header Compression and Fragmentation
The header of the traditional IP protocol stack is designed

for fast parsing and to be extensible. Also, different layers
are kept separate. These design principles result in signif-
icant redundancy. Through header compression, the frame
size can be significantly reduced, thus significantly enhanc-
ing efficiency, especially for small packets.

Since in each field of each layer header there exist com-
mon values, we can reduce the number of bits to represent
those common values. If the field value does not fall into our
common value set, we carry those fields after the header. For
example, thenext header field of IPv6 header is usually UDP,
TCP or ICMPv6. Then, we can use 2 bits and assign 00 to
UDP, 01 to TCP and 10 to ICMPv6. In this way, the 2-byte
field is compressed into 2 bits. If a packet carries a different
payload, we set this field to 11, and carry the original 2 bytes
after the header. In addition, redundancy is further reduced
by considering the headers of the 3 layers as a single “big
header”.
4.1 Frame Header Compression

The tasks of the frame header include marking the next
hop address, helping reassemble the packet and carrying in-
formation for mesh routing. Although it is usually added to
the frame at the data link layer, we add it in the adaptation
layer since the adaptation layer maintains neighbor and mesh
routing information.

The first two bytes represent hop-by-hop addresses. In-
stead of traditional 6-byte MAC addresses, we use a one byte
hardware-like address. Hence, a subnet can contain up to
253 underwater devices (0 is for network identifier and 255
is reserved for broadcast). If more devices are involved in a
deployment, one can divide them into different subnets each
connected to a border router.

Hop-by-hop addresses are followed by fragmentation in-
formation. The first bit is a flag to mark if this frame is
the last frame of a packet. The other 7 bits are for the se-
quence number of the packet, which assists the receiver with
reassembly if frames do not arrive in order. As we set the
minimum payload size to 32 bytes, the fragmentation can at
most support a packet of 32×27 = 4096 bytes. We also use
11 bits to keep track of the payload length of the frame. The
maximum transmit unit is 211 = 2048 bytes.

The last part is 6 bits long and keeps track of the rout-
ing information. Since the end-to-end source or destination
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is usually the border router, we use one bit to denote if this
field is the border router. If it is, we compress the 1 byte in-
formation into 1 bit only. Otherwise, we carry the hardware
address in-line. We allocate 3 bits to “hop limit”, which ap-
pears to be sufficient for most realistic deployments.

4.2 IPv6 Header Compression
By fully utilizing the common value of some fields, in the

best case, we can compress the 40-byte IPv6 header into 1
byte. We use 1 bit for the version, to distinguish IPv4 and
IPv6 header. Since the value of traffic class and flow label
are usually 0, 1 bit is used to represent these 2 fields, other-
wise they will be carried inline. The next 4 bits are assigned
to denote source and destination addresses. For each address
composed of 2 bits, the first bit is responsible for checking
the status of IPv6 status. Supposing the value of this bit is 1,
the IPv6 address prefix is the link-local prefix. The other bit
is used to indicate if the IID can be derived from the hard-
ware address. Even through an outbound packet does not use
link-local prefix, nodes can use it before the packet is routed
to the border router. Since the border router knows the global
prefix, it can recover that field when forwarding packets to
traditional IP networks. Since link-local prefix is used as
one of the common values, the system benefits from greater
probability of transmitting using link-local prefix. The next
header field is reserved for UDP, TCP and ICMPv6.

4.3 IPv4 Header Compression
Similar to the IPv6 header, we can also compress the IPv4

header from 20 bytes to 1 byte in the best case. Sometimes
IPv4 requires fewer bytes due to the shorter addresses. How-
ever, several functions have to be truncated. The first bit is
still used to identify the version of the packet. Then, nodes
can parse the compressed frame header. The next bit is used
for the field Differentiated Services Code Point (DSCP) and
Explicit Congestion Notification (ECN). The value of this
byte is usually 0. Source and destination use 2 bits respec-
tively. The first bit is to indicate if the subnet address is the
same as the border router and the second is 0 if it is the same
with the nodes hardware address. Also, the protocol field has
the same usage as the next header field for IPv6 packet and
reserved for UDP, TCP and ICMP.

The IPv4 packet header also provides other functions. By
setting them to their default value, those fields can be elided.
For example, IPv4 can fragment packets to fit the limited
maximum transmit unit. As our adaptation layer is respon-
sible for fragmentation, we set the fragmentation flag to be
always 1, and prevent the IPv4 protocol from fragmenting

the packet. Then, the fragmentation offset can also be elided.
For UDP, TCP and ICMPv6 header compression, we use the
same scheme as in 6LoWPAN.

5 Frame Size Optimization
Choosing the optimal frame size is important in underwa-

ter networks because of the high transmission energy con-
sumption and the time-varying underwater channel. Trans-
mitting a frame of correct length can avoid retransmissionsin
bad channels and can reduce the overhead in good channels.

5.1 Bit-Error-Rate Based Optimization
If the bit error rate ispe and the frame size isl bits, the

packet can be successfully transmitted with a probability of

ps = (1− pe)
l . (1)

The frame size can be further divided into two parts and be
expressed asl = lp + lh, wherelp and lh are the length of
payload and header in bits respectively.

Assuming the node transmit one frame and then stops to
wait for an ACK, and retransmits an unlimited amount of
times until the packet is successfully delivered, the average
number of transmission isNT X , and can be expressed as

NT X =
1

(1− pe)l . (2)

Each frame is transmitted after an RTS and CTS hand-
shake. We assume that an RTS and CTS packet consume
Er andEc units of energy, respectively, and the energy con-
sumption of ACK or NACK frame isEa. In addition, we
assume a data frame costsEd units of energy for its pream-
ble andEb for each following bit. Then, we can express the
energy consumption to transmit one frame as

E = Er +Ec +NTX · (Ed +(lp + lh) ·Eb)+NTX ·Ea, (3)

and the energy efficiency asη =
lp
E [bit/J].

We would like to choose the right packet size to maximize
the energy efficiency subject to some basic constrains. The
problem can be expressed as

Given :pe, lh,MTU,Er,Ec,Ed ,Eb,Ea

maximize
lp

η

subject to lp > 0

lp + lh < MTU

lp ∈ 8×Z.

This optimization problem is an integer program, which is
not easy to solve in general. However, the limited feasible set
makes this problem easy to solve in practice by enumeration.

5.2 Bit Error Rate Estimation
Frame size optimization relies on a good estimate of the

bit error rate (BER). Exchanging information between nodes
introduces extra overhead and wastes energy. However, by
observing the sequence of ACKs and NACKs, one can infer
whether a frame has been delivered or not. Thus, we can
define an array of the frame delivery history as

H = {(l1,s1), . . . ,(ln,sn)}, (4)



wherel is the frame length in bits, ands represents whether
or not the frame has been successfully delivered with +1 and
-1, respectively. A frame is recorded as success if an ACK
is received, or as fail if NACK is received or if there is an
ACK/NACK timeout. We can then define a maximum like-
lihood estimator to find the BER with the highest likelihood.
The likelihood can be expressed as

P(pe|H) =
P(H|pe)P(pe)

P(H)
, (5)

where

P(H|pe) =
n

∏
i=1

(

1− si

2
+ si(1− pe)

li

)

. (6)

In addition, we assume thatP(H) is independent of BER and
that BER is uniformly distributed on[0,0.5], since we have
no a priori information.

6 Neighbor Detection and Autoconfiguration
6.1 Neighbor Discovery in IPV6

IPv6 uses ICMPv6 for neighbor discovery and router dis-
covery. Also, by maintaining a neighbor table, the IPv6 ad-
dresses of neighbor nodes are mapped to their hardware ad-
dress. Routers use router advertisement to announce theirs
existence periodically, and reply to router solicitationsfrom
nodes. Nodes also use neighbor solicitation and neighbor
advertisement to exchange information. However, all these
functionalities are defined within one IP hop.

If a mesh-under scheme is used, all the nodes are within
one IP hop. However, a flooding-like broadcast in the whole
underwater subnet can create excessive overhead. Instead of
broadcasting the packets among the whole underwater sub-
net, we limit the router advertisement (RA) multicast to one
underwater hop. Those nodes that received the RA packet
become router proxies. If a node does not have the infor-
mation of any router, it multicasts a router solicitation (RS)
packet. When router solicitations are grabbed by a router
proxy, the router proxy will unicast router information to the
source of the router solicitation, together with some mesh
routing information. Then, this node becomes a new router
proxy and waits for further router solicitations from other
nodes. Every router proxy will also request updated router
information from other router proxies periodically.

Figure 8 illustrates this procedure. Alice does not have
border router information, so she multicasts a router solicita-
tion. Bob and Charlie, as router proxies, reply. Since Charlie
is on the best route to the border router, Alice chooses Char-
lie, and then Alice becomes a new router proxy.
6.2 Autoconfiguration in IPv6

IPv6 defines both stateless and stateful autoconfiguration
mechanisms. The latter one is the well known DHCPv6.
Stateless autoconfiguration assigns a prefix and an IID to
each node. The default prefix is fe80::/64 and the IID is
based on the node’s MAC address. Unlike IPv4, even when
a routable IP address is assigned, each node will still have
the link-local address. Before global prefix is assigned, each
node locally generates an address with link-local prefix and
IID derived from the hardware address. The global prefix
is assigned by router advertisement packets, which can also
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be sent from the router proxy in our architecture. The bor-
der router can also implement a DHCPv6 server, which pro-
vides flexibility and ensures no duplicated IP address in the
whole underwater subnet exist. The border router can autho-
rize each router proxy with a portion of the IP address space
and let proxies serve as DHCPv6 server.

6.3 ARP in IPv4
IPv4 uses ARP for mapping a link layer address to an IP

address. ARP is designed for broadcast within a single IP-
hop, and is not to be routed inter-network. Since broadcast
can involve excessive overhead, ARP is unsuited for under-
water wireless networks.

One of the key points of mesh routing is to create virtual
links between the border router and each node. Like typi-
cal WiFi networks, each node only regards the router as its
neighbor and ignores the existence of the other nodes. Each
node, if it knows router information, serves as a router proxy
and can send ARP packets on behalf of the border router.
Other nodes that do not have router information will only
keep silent.



The ARP procedure is illustrated in Fig. 9. Alice sends
an ARP request. Bob does not know where the border router
is, so he keeps silent. Charlie, as a router proxy, replies with
an ARP reply on behalf of the border router. Thus, from the
network layer perspective, the ARP reply is from the border
router and Charlie is not a neighbor of Alice.

6.4 DHCP in IPv4
The most serious problem of IPv4 is the address exhaus-

tion problem, and Net Address Translation (NAT) is the
state-of-art solution to this problem. Borrowed from IPv6,
the idea of assigning IPv4 IID the same identifier as the node
MAC/hardware address can be used for the stateless auto-
configuration. By doing so, each node is its own proxy and
the adaptation layer replies a DHCP request message, so that
broadcast is avoided. For mobile nodes, the adaption layer
just sends that DHCP packet out to avoid address duplica-
tion.

7 Routing and Forwarding
7.1 Mesh Under vs. Route Over

Since the adaptation layer sits between the data link and
the network layer, from an architectural perspective it can
either hand all packets that need to be forwarded over to the
network layer, or it can forward packets itself “under” the
network layer. The case where the adaptation layer gives
incoming packets to the network layer is referred to asroute-
over. On the contrary, we refer tomesh-under as the case
where the adaptation layer forwards packets until they arrive
at their destination.

Mesh-under is a so-called layer-2 solution to route from
one node to the border router without the help of the IP layer.
One of the most serious challenges is that it is difficult to find
the global optimal route since the underwater segment does
not have global state information about the other segments
of the network. However, routing in the underwater segment
of the network is typically much more “expensive” in terms
of delay, energy consumption, and bandwidth. Since the cost
of packet forwarding in terrestrial network is negligible,op-
timized routing in the underwater segment is typically the
main priority.

As discussed before, since the whole underwater subnet
can be represented with link-local addresses, the adaptation
layer can better compress the header to significantly reduce
the overhead. Furthermore, if the adaptation layer can mon-
itor ICMPv6 or ARP packets to form its own routing table,
there is no extra cost to enable mesh routing. Moreover, the
idea of router proxy fits a mesh-under scheme better, since
when a node sends a router solicitation but the router is too
far away to receive it, other nodes cannot help to forward the
router solicitation.

In the route-over scheme, each interface of any node is
seen as a separate network and a routable IP address must
be assigned and used to transmit packets. The advantages of
route-over include that it can utilize network layer capabili-
ties provided by the IP protocol. For example, ICMPv6 pro-
vides a full set of neighbor detection and router solicitation
schemes that can help find the best route. Moreover, some
well-known tools used to diagnose IP links, e.g., traceroute,
can only be used with the network-layer routing. However,

header compression will become much less efficient since
link-local prefixes can only be used for single hop communi-
cation. Due to the lack of router proxy, when a node wants to
fetch some configuration, packets have to be forwarded many
times before they reach the border router. Basically, broad-
casting in the whole underwater segment becomes nearly im-
possible or very complex. For these reasons, a mesh-under
scheme was selected in our architecture.

8 Evaluation
To evaluate the IP compatible architecture, we imple-

mented it in a Linux driver as described in Figure 4. It was
tested on both PC and an ARM-based single-board computer
Gumstix [12]. The device dependent part is designed to drive
Teledyne Benthos [13] Telesonar SM-75 Modem with Mo-
dem Management Protocol (MMP) [14] over RS-232 Serial
Port. In addition, for experiments that require a controllable
and repeatable channel, we have developed a Java based sub-
packet level real-time underwater network simulator. The
simulator uses the same parameters as the SM-75 modem.

We validated our driver by using it with existing appli-
cations. To test interoperability with the UDP protocol, we
used a local area network (LAN) instant messaging software
called IPTUX to exchange messages between two nodes. We
were able to successfully transfer files between an server and
a client with FTP protocol. Our architecture is implemented
without major modification to the typical TCP and UDP pro-
tocols. The only parameters that need to be tuned are the ini-
tial retransmission timeout (RTO) of the TCP protocol, for
one second [15] is too short for underwater communications
even when routing and forwarding is not required. However,
since the control algorithm of TCP is designed for fast net-
works, the round-trip-time estimation and congestion con-
trol algorithm may not be optimal for underwater network.
For example, three-way handshaking wastes too much en-
ergy and time, and sessions can be easily terminated due to
the poor channel conditions. Hence, UDP with application
layer session and congestion control schemes may be a better
option.

One of the most significant advantages of our architec-
ture is the higher energy efficiency. The combined effect of
the data fragmentation and streaming scheme saves energy
by trading-off between header overhead and retransmission
overhead. This is especially notable when large data pack-
ets are transmitted. Moreover, header compression reduces
the overhead for short control packets as well as large data
packets. The energy consumption for control and informa-
tion exchange is further cut down by the routing proxy.

Since our fragmentation scheme heavily relies on a good
estimate of the bit error rate, we first examine how well the
estimator works. The simulation is performed in our sim-
ulator where the sender and the receiver are 1500 m apart.
The application layer generates packets following a Poisson
distribution; the packet arrival rate is much higher than the
channel capacity. The sender transmits at a power of 3.4 W.
Figure 10 illustrates the estimated BER on a specific link.

The estimator evaluates the BER with sufficient accuracy and
is rather stable. In addition, the estimator finds the right or-
der of BER in less than 10 transmissions and the estimated
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Figure 10. Estimation of the Bit Error Rate.
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Figure 12. Energy Consumption for Information Ex-
change.

BER is in the range of 1×10−4 around the theoretical BER
since about 30 transmissions. Figure 11 shows that the en-
ergy efficiency is increased by 50% when compared with
non-fragmentation based schemes.

Next, we demonstrate the energy savings obtained
through header compression and router proxy. We assume
that there aren nodes in a line topology, and a node can
only communicate with its nearest neighbor. The router is
at one end. We calculate the energy consumption for all the
nodes to get to know the router information using Router
Advertisement and Router Solicitation. Figure 12 shows
that header compression reduces the energy by shrinking the
transmission size. When the number of hops increases, the

router proxy shows its ability in saving energy. If the depth
of the routing tree is greater than 5, the energy consumption
is decreased by 70%.

9 Conclusions
We proposed a new underwater networking architecture

that enables support for a traditional TCP/IP protocol stack.
The proposal is based on an adaptation layer located be-
tween the data link layer and the network layer, such that
the original TCP/IP network and transport layers are pre-
served unaltered. The adaptation layer performs header
compression and data fragmentation to guarantee energy ef-
ficiency. Furthermore, the proposed architecture includes
mechanisms for auto-configuration based on router prox-
ies that can avoid human-in-the-loop and save energy when
broadcast is needed. The proposed architectural framework
was implemented as a Linux device driver for a commercial
underwater network modem SM-75 by Teledyne Benthos.
Testing and simulation results illustrate that the architecture
efficiently provides interoperability with TCP/IP.
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