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Abstract—Radio fingerprinting uniquely identifies wireless de-
vices by leveraging tiny hardware-level imperfections inevitably
present in off-the-shelf radio circuitry. This way, devices can
be directly identified at the physical layer by analyzing the
unprocessed received waveform – thus avoiding energy-expensive
upper-layer cryptography that resource-challenged embedded
devices may not be able to afford. Recent advances have proven
that convolutional neural networks (CNNs) – thanks to their
multidimensional mappings – can achieve fingerprinting accu-
racy levels impossible to achieve by traditional low-dimensional
algorithms. The same research, however, has also suggested that
the wireless channel may negatively impact the accuracy of CNN-
based radio fingerprinting algorithms by making device-unique
hardware imperfections much harder to recognize.

In spite of the growing interest in radio fingerprinting research
by academia and DARPA, the wireless research community still
lacks (i) a large-scale open dataset for radio fingerprinting col-
lected in diverse environments and rich, diverse, channel condi-
tions; and (ii) a full-fledged, systematic, quantitative investigation
of the impact of the wireless channel on the accuracy of CNN-
based radio fingerprinting algorithms. The key contribution of
this paper is to bridge this gap by (i) collecting and sharing with
the community more than 7TB of wireless data obtained from 20
wireless devices with identical RF circuitry (and thus, worst-case
scenario for fingerprinting) over the course of several days in (a)
an anechoic chamber, (b) in-the-wild testbed, and (c) with cable
connections; and (ii) providing a first-of-its-kind evaluation of
the impact of the wireless channel on CNN-based fingerprinting
algorithms through (a) the 7TB experimental dataset and (b)
a 400GB dataset provided by DARPA containing hundreds of
thousands of transmissions from thousands of WiFi and ADS-
B devices with different SNR conditions. Experimental results
conclude that (i) the wireless channel impacts the classification
accuracy significantly, i.e., from 85% to 9% and from 30%
to 17% in the experimental and DARPA dataset, respectively;
and that (ii) equalizing I/Q data can increase the accuracy to a
significant extent (i.e., by up to 23%) when the number of devices
increases significantly.

I. INTRODUCTION AND MOTIVATION

The Internet of Things (IoT) will soon realize our long-
standing vision where tiny embedded wireless devices are
deployed just about everywhere – around us [1] and also
inside us [2]. The never-before-seen pervasiveness of IoT
devices – coupled with their peculiarly resource-constrained
nature – ultimately makes the design of low-power identi-
fication techniques a compelling necessity [3]. Regrettably,
legacy radio identification techniques mostly rely on energy-
hungry cryptographic techniques such as private- or public-
key cryptography, which operate at the MAC layer and above
and thus require extra computational resources – making them

hardly suitable for devices possessing CPUs with a handful of
megahertz and memory in the order of hundreds of kilobytes.

Thanks to its proven efficacy, radio fingerprinting has
recently received significant interest from both academia
and government [4–11]. In short, radio fingerprinting uses
waveform-level imperfections imposed by the radio-frequency
(RF) circuitry to obtain a “fingerprint” of the wireless device,
which cannot be imitated by adversarial devices. These imper-
fections include I/Q imbalance, phase noise, frequency offset,
sampling offset, and phase noise, among others [12]. More-
over, by operating at the physical layer, radio fingerprinting has
a very low impact on the device’s resources. To further attest
to its crucial importance, the Defense Advanced Research
Projects Agency (DARPA) has sponsored the radio-frequency
machine learning systems (RFMLS) program [11], where the
main task is to learn to recognize a specific transmitter based
on the RF hardware imperfections.

Recently, convolutional neural networks (CNNs) have been
proposed to fingerprint radios though deep learning of the
hardware impairments [13, 14]. CNNs are becoming more
and more popular in the wireless community [3, 15–18],
thanks to their ability to avoid manual – and thus, significantly
cumbersome and necessarily sub-optimal – feature extraction
techniques, such as Zigbee’s O-QPSK modulation [8] or the
WiFi training symbols [5, 7]. Another downside is that the
derived algorithm is highly protocol-dependent and therefore
not entirely applicable to general waveforms. Conversely, by
taking as input “raw” (i.e., unprocessed) I/Q samples, CNNs
can fingerprint wireless devices using any wireless technology
of choice. This key aspect makes deep learning-based radio
fingerprinting particularly desirable for the IoT, where different
wireless technologies co-exist [19].

Cutting-edge advances, however, have hinted that the non-
stationary, dynamic and unpredictable effect of the wireless
channel may cause the accuracy of the CNN to plummet (i.e.,
from 98% to 71%) when tested with a waveform collected
after a number of days the CNN was trained [16]. This
is because, at their core, CNNs make the somewhat strong
assumption that the input data is (i) time-stationary, i.e., the
same input does not change over time; and (ii) inputs are
drawn from independent and identically distributed (i.i.d.)
random variables. However, this may not always be the case
for the wireless environment, where (i) hardware impairments
may change over time due to unpredictable phenomena such
as temperature and voltage oscillations; and (ii) the wireless
channel is convolved with the transmitted waveform with time-



varying parameters dependent on the current level of fading
and noise – which can only be estimated in real-time through
packet-level pilot symbols. To address the issue, the authors in
[16] point out that since retraining a CNN in real-time may be
prohibitive, a dynamic, channel- and device-tailored strategy
must be devised. To this end, they show that a carefully-
tailored finite input response (FIR) applied at the transmitter’s
side can be used to partially bring back the accuracy to an
acceptable level.

What is Missing Today

Despite the recent rush of research activity on radio fin-
gerprinting, there are still a number of stark and fundamental
questions that need to be addressed. This is not at all surprising
– the highly non-linear behavior of CNNs, joint with the
non-stationary nature of impairments, fading and noise, make
understanding the impact of the wireless channel a formidable
challenge. The towering issue, among others, is gaining insight
on whether the CNN is learning (i) only the device’s hardware
impairments or (ii) only the channel or (iii) a combination of
impairments and channel. Moreover, we still do not know (i)
if channel equalization can be truly beneficial to the learning
process of the CNN, and (ii) what is the best environment to
train and test the CNN algorithms. It is clear that without a
full-scale experimental investigation, any advance in the field
will necessarily be plagued by the following question: “is the
action of the wireless channel impairing the learning, or is my
model too small and thus underfitting?”

Moreover, it is a matter of fact that groundbreaking innova-
tion in this critical field has been so far severely stymied by
the lack of large-scale waveform datasets providing a common
benchmark for researchers working in the field. Without a
common waveform dataset collected under rich and diverse
wireless conditions, it is indeed unavoidable that every paper
on radio fingerprinting will claim to be “better than the previ-
ous ones.” This does not happen in more mature and widely-
explored learning domains such as computer vision and natural
language processing, where massive-scale labeled datasets
such as MNIST for image classification [20] and IMDb for
sentiment analysis [21] have been completely available to the
research community for many years. Unfortunately, as far as
we know, existing work on radio fingerprinting has so far
refrained from releasing its testing data to the community, thus
creating a fundamental need for data that is yet to be fulfilled.

Technical Contributions

The paper’s key contribution is to report the largest data col-
lection campaign and experimental evaluation ever conducted
to evaluate radio fingerprinting algorithms. Specifically, we
make the following technical contributions:

• We conduct a massive data collection campaign aimed
at evaluating the impact of the wireless channel on CNN-
based radio fingerprinting algorithms. We first consider the
worst-case scenario for radio fingerprinting, i.e., devices with
the same RF circuitry. To this end, we collect data in the
following scenarios, described in Section IV: (i) a 20-radio
“in-the-wild” setup where nominally-identical USRP devices
transmit the same baseband signal to a single receiver. We

investigate the case where the devices (a) use the same antenna
and distance from the receiver, and (b) use different antennas
and distance; (ii) a 10-radio setup where we use a 50x50x22ft
anechoic chamber to study radio fingerprinting in optimal
RF conditions; and (iii) a 20-radio testbed where we collect
data using an RF cable to collect the waveforms from the
USRP devices (Section V). To the best of our knowledge, no
such data has ever been collected and made available before,
making our experimental results and the related dataset first-
of-its-kind and thus extremely valuable;
• Through a large-scale dataset provided by DARPA1, we

analyze the fingerprinting performance on 10,000 WiFi and
ADS-B [22] devices emitting more than 300,000 transmissions
(Section VI). We analyze the impact of the number of devices
and the signal-to-noise ratio (SNR) level on the performance.
As far as we know, no previous paper has ever reported
fingerprinting performance for thousands of devices;
• Experimental results on both testbed and dataset unequiv-

ocally conclude that (i) the wireless channel impacts on the
classification accuracy significantly, i.e., from 85% to 9% and
from 30% to 17% in the experimental and DARPA dataset,
respectively; and that (ii) equalizing I/Q data can increase the
accuracy to a significant extent (i.e., by up to 23%) when the
number of devices increases significantly.

II. RELATED WORK

The main focus of early work on radio fingerprinting has
been devising hand-tailored feature extraction techniques [5–
10, 23]. Nguyen et al. [6] propose a non-parametric Bayesian
method to detect the number of devices through device-
dependent channel-invariant radio-metrics, however, the ef-
fectiveness of the methodology is tested on 4 ZigBee nodes
only. Brik et al. [5] consider a large (i.e., 130 devices) WiFi
testbed, and through carefully-tailored transients and offset-
based features show that 99% accuracy can be achieved. On
the other hand, Brik et al. only consider experiments in an
anechoic chamber, and thus the effect of the channel is not
considered. Conversely, [7] evaluates, on an in-the-wild WiFi
testbed, several feature-based algorithms based on the WiFi
scrambling seed, frequency offset and transients, achieving
accuracy up to 50% on about 100 devices. Peng et al. [8]
devise features based on the ZigBee’s PSK constellation to
fingerprint 54 radios with about 95% accuracy. Recently,
Zheng et al. [4] proposed an F(·) function to model a device’s
modulation and timing errors, frequency offsets and power
amplifier noise, and show that high-accuracy can be achieved
on a series of 33 devices. However, the multipath evaluation
in [4] is somewhat limited, and thus it is not definitely clear
whether the algorithm is indeed learning the impairments or
learning the channel. Moreover, Zheng et al. state that “.. if we
want to identify WiFi signals whose symbol rate is 20M/s in
multipath environments, channel estimation and deconvolution
is an indispensable step.”

Recent work has demonstrated that deep learning can be
successfully used to fingerprint wireless devices with high

1Unfortunately this dataset cannot be released to the community due to
contract obligations. We hope this will change in the future.



accuracy [13, 14, 16, 24, 25]. Merchant et al. [24] and Das
et al. [25] leverage CNN and RNNs to achieve respectively
92% accuracy on a testbed of 7 ZigBee devices and 90%
on 30 LoRa devices. However, the effect of the channel on
the performance is not studied. The works in [13, 14] are
the first to explicitly evaluate the impact of impairments on
the performance of CNN-based fingerpriting algorithms, and
propose the introduction of artificial impairments to improve
the accuracy. However, the approaches in [13, 14] do not show
how the receiver can accurately compensate the introduced
impairments, and it is not clear how to connect the increase
in accuracy and the introduction of the hardware impairments.
Gopalakrishnan et al. [26] explore the use of complex-valued
CNNs for radio fingerprinting.

The closest work to ours is [16], where Restuccia et al.
investigate the wireless channel issue in radio fingerprint-
ing, and propose to compensate the wireless channel by
developing a FIR filter that applied at the transmitter’s side
can compensate the distortion in the received I/Q samples.
However, the authors do not investigate what the CNN is
actually learning, or how the channel conditions affect the
classification results. In this work, for the first time, we focus
on evaluating the channel (wireless and wired) impact in real-
world experimental environments (in-the-wild and anechoic
chambers) and through a large-scale dataset.

III. LEARNING AND DATA COLLECTION METHODOLOGY

We first provide some background on CNNs in Section
III-A, then describe our CNN architectures in Section III-B,
and finally the performance metrics in Section III-C.

A. Background on Convolutional Neural Networks (CNNs)

CNNs have found tremendous success in the computer vi-
sion and language processing domains [27–29]. In the wireless
domain, we have seen groundbreaking advances in CNN-based
modulation classification [15, 30, 31] and radio fingerprinting
[13, 14, 16]. Differently from image-based domains, and
due to its immediate applicability to I/Q data, we consider
CNNs with one-dimensional convolutions (1D) instead of two-
dimensional (2D) convolutions. Conv1D networks, indeed,
perform extremely well in locating patterns (in our case,
hardware imperfections) regardless of where the imperfection
actually starts. This property is called shift-invariance of
neural networks.

The core component of a CNN is the convolution layer,
which in a nutshell convolves a number of equally-sized
kernels with the input. The stride parameter controls the
step size of the kernel across the input. The output of the
convolution layer is a vector of feature maps with decreased
dimension compared to the original input. More formally, a 1D
convolution layer is composed of F filters Kn, 1 ≤ n ≤ F .
By defining D and W as the depth and the width of the kernel,
each filter generates a mapping Yn ∈ RF−W+1 from an input
X ∈ RD×L as follows:

Yn
j =

L−W∑
x=0

Kn
j−x ·Xn,x (1)

where L is the length of the input.
By choosing the depth of the kernel as D = 2, we force each

kernel to jointly learn a pattern across the I and Q components
of the received waveform. To introduce non-linearity in the
CNN, we use the popular rectified linear units (ReLU) activa-
tion functions. Since the ReLU sets negative values to zero,
the output becomes sparser than other activation functions,
which provides robustness to noise. We also use a maximum
pooling (MaxPool) layer to reduce the number of parameters.
What the MaxPool layer does is to aggregate all values in a
pool by using the max operator. Finally, we use dense layers
to generate high-level features after the convolution layers,
and one classifier layer with as many outputs as the number
of classes and using the softmax activation function. Given a
weight matrix W ∈ RM×N and a bias vector b ∈ R1×N ,
each dense layer generates an output Yn ∈ R1×N from an
input X ∈ R1×M through the following:

Y = W ·X+ b (2)

As in the case of the convolution layer, non-linearities can
be introduced by the ReLU activation. By using the categorical
cross-entropy as loss function, the output of the network is the
probability of each class.

B. CNN Architectures and Inputs
Figure 1 shows the three different CNN architectures we use

to understand to what extent model architecture can mitigate
the channel impact. The smallest model is called Homegrown
and is shown in Figure 1(a). It is a very simple architecture
composed by two one-dimensional (1D) convolutional layers
(ConvLayers), each operating with 50 filters – of size 1x7
and 2x7 for the first and second ConvLayer, respectively –
and rectified linear units (ReLU) as activation function. The
output of the ConvLayers is then fed to two dense layers of
256, and 80 neurons, respectively. Finally, a softmax layer is
used to get the classification probability. A dropout of rate 0.5
is also used to reduce overfitting.

Figure 1. The CNN architectures used in this Paper.

While we show that increasing the CNN depth leads to a
significant increase in fingerprinting accuracy, it also inevitably



slows the training time. For this reason, we utilized deeper
CNN architectures to study whether such architectures can
tame the channel impact and increase fingerprinting accuracy
in the larger DARPA dataset.

The Baseline model, shown in Figure 1(b), is a modified
version of the well-known AlexNet CNN [? ] and consists
of two one-dimensional (1D) convolution layers followed by
ReLU activations and a 2x2 MaxPooling layer to decrease
overfitting. This sequence is repeated five times and the output
is then fed to three fully connected layers of 256, 256, and
128 neurons, respectively.

Another architecture we consider in our investigation is the
ResNet-50-1D model shown in Figure 1(c), which is inspired
from the well-known residual network (ResNet) architecture
[28]. Similarly to it 2D version, ResNet-50-1D consists of 50
layers which have been converted into 1D to reduce the overall
complexity of the architecture. The convolution block (CVL)
and identity block (ID) in Figure 1(c) both consist of three
Conv1D layers with 64, 64, and 256 filters, respectively. Each
of these layers has a filter size of (1x1), (1x3), and (1x1),
respectively. All three models were implemented in Keras with
TensorFlow backend.

A major challenge in applying CNNs to the wireless domain
is that they are restricted to operate on inputs with fixed length.
However, wireless transmissions are obviously variable in size.
For this reason, we use a sliding window approach to cut
each transmission (in both training and test set) as shown
in Figure. 2. Specifically, given an I/Q sequence k of length
Mk, we generate Mk − j + 1 slices of length j by sliding a
window with stride 1. Each slice is then labeled individually,
receiving the ID of the device that generated the transmission
as a label. We do not use all the generated slices, but only Mk

j κ
slices uniformly at random from each transmission, where
1 ≤ κ ≤ j. Since an I/Q sample appears in approximately
κ ∈ [0, j] slices, we refer to κ as the replication factor.

Slicing and randomization have several advantages. First,
they ensure we can always train our models on fixed input
sizes. Second, they enhance the shift invariance of the fea-
tures learned by the network – indeed, RF imperfections can
manifest anywhere in a slice, and randomizing the slice origin
enforces this invariance in the data. Third, the slices belonging
to an entire transmission can be used to boost the classification
accuracy, for example, by taking the majority label. Finally,
slicing allows us to avoid varying length input issues like
vanishing gradients.

C. Performance Metrics

As per usual machine learning common practice, we use a
training and a testing dataset to evaluate the model’s learning.
To assess the performance of our models we use the following
performance metrics:

• ”Per-slice” Accuracy (PSA), the number of correctly
predicted slices over the total number of tested slices from
the testing dataset;

• ”Train-and-Test-One-Day” Accuracy (TTOD), the PSA
over a testing dataset consisting of slices collected during
the same day of that used in the training process;

Figure 2. Given a time-series of length Mk , we create Mk − j + 1
subsequences of length j by sliding a window of length j over the larger
sequence (or stream) of I/Q samples (with stride 1). This leads to inputs of a
fixed length, but also enhances shift invariance.

• ”Train-One-Day-Test-Another” Accuracy (TDTA), the
PSA over a testing dataset consisting of slices collected
during a different day of that used in the training process;

• ”Per-Transmission” Accuracy (PTA), which reports the
CNN accuracy in predicting to which device a transmis-
sion belongs to. Specifically, each data transmission is
divided into a set of consecutive slices with predefined
slice length. This set of slices is fed to a pre-trained
model that individually classifies every slice in the set
and map it to the predicted device, which is the device
that got the highest prediction probability over all tested
slices. For example, let us consider the case the total
number of labeled devices is equal to K, and for each
device we collected [1, 2, ..., n, ...N ] transmissions. Each
transmission is divided into S slices, each with length L.
For each slice j belonging to transmission n, the per-slice
prediction probability is equal to

∑S
j=1 Px,j , where Px,j

is the predicted probability that slice j belongs to device
x. The predicted device x̂ is thus computed as follows:

x̂ = argmax
x

Sn∑
j=1

Px,j (3)

D. Data Collection and Experimental Dataset: An Overview

As in most of previous radio fingerprinting work [5, 7, 13,
14, 16], we chose to collect I/Q samples transmitted using the
IEEE 802.11 a/g (WiFi) standard [32], which is arguably the
most common wireless communication used nowadays. The
WiFi standard uses orthogonal frequency division multiplexing
(OFDM) and thus multiple subcarriers to transmit each digital
symbol, which can be modulated using BPSK, QPSK, 16QAM
or 64QAM, with different levels of convolutional coding (1/2
or 3/4). A short training sequence (STS) is used for frame
detection, while a long training sequence (LTS) is used to
perform time synchronization. Then, a fast Fourier transform
(FFT) is used to bring the I/Q samples back to the frequency
domain from the time domain and thus recover the transmitted
digital symbols. Finally, the LTS is again used to perform
channel estimation and offset correction. The equalized I/Q
samples are then decoded and sent to higher layers.

Figure 3 summarizes the I/Q data collection procedure.
To analyze the effect of the channel at different stages of
the WiFi demodulation process, we collect the following
I/Q samples: (i) Raw I/Q before FFT; (ii) Raw I/Q after



Figure 3. Architecture of collected I/Q data.

FFT; and (iii) Equalized I/Q. We use the Gnuradio WiFi
implementation by Bloessl et al. [33] to both transmit and
collect I/Q samples. This allowed us to have perfect control of
each WiFi demodulation stage and thus ease significantly the
data collection process. Samples are streamed at 2.432 GHz
(5-th WiFi Channel), at sampling rate of 20 MS/s and with
BPSK 1/2 as modulation and coding scheme. Each transmitter
sends exactly the same WiFi frame over and over again. The
samples are also received at 20 MS/s.

Figure 4. Organization of Testbed Dataset.

Figure 4 shows the structure of our data collection process
and the generated files. We define as device burst a set of 10
different transmissions of about 30 seconds each, with each
transmission spaced in time approximately 1 minute from each
other. During each recording day, we collect a burst from each
device, for 10 days. Each device burst generates 3 files, as
shown in Figure 3. During each transmission, we append the
I/Q samples to the appropriate file. Each device burst generates
approximately 26GB of data.

We label each of the 3 files using the Signal Metadata
Format (SigMF) [34], which describes sets of recorded digital
signal samples with metadata written in plain-text JSON. We
used SigMF since it is widely used yet simple format that can
be parsed by any JSON parser in any programming language.
By using SigMF, one recording consists of (i) the binary file
containing the I/Q samples, and (ii) a metadata file containing
general information about the recorded I/Q samples. In our
case, we store in the metadata file information regarding (i) the
sampling rate, (ii) time and day of recording, and (iii) testbed
type (described in Section IV), among others. The dataset is
available on the Institute for the Wireless Internet of Things
(WIOT) website, https://northeastern.edu/wiot.

Figure 5. Pre-processing and Classification Pipeline. For WiFi transmissions
(left), we perform band filtering (i.e., extracting the signal shown by the
bounding box). The sliding window creates multiple slices that are fed to
the classifier for training and testing.

E. DARPA Dataset: An Overview

The dataset contains both WiFi and ADS-B transmissions.
The WiFi portion of the dataset contains 5117 devices and
166 transmissions on average for each device. A spectrum
analyzer is used to record each transmission, operating at
center frequency of either 2.4 GHz or 5.8 GHz with sampling
rate 200 MS/s. Each recording consists on average of 18686
I/Q samples. The ADS-B dataset contains 5000 devices and 76
transmissions on average for each device. Each transmission is
recorded at the center frequency of 1.09 GHz with sampling
rate 100 MS/s. Each recording on average consists of 9156
IQ samples. Due to the high sampling rate, WiFi signals
in the DARPA dataset include multiple devices transmitting
simultaneously on multiple bands. Thus, as shown in Figure. 5,
we move the signal to baseband and apply a low pass filter to
remove any interference or noise generated out of band.

IV. EXPERIMENTAL TESTBEDS AND SETUPS

The “in-the-wild” testbed is shown in Figure 6 and consists
of an 8x8 VERT2450 antenna grid testbed covering an indoor
area of 6000 square ft. The 64 antennas are connected to 24
USRPs controlled by 12 host servers. The USRPs are syn-
chronized both in phase and frequency through four National
Instruments OctoClock clock distributors and are connected to
the antennas mounted on ceiling rails through 100ft-long low-
attenuation coaxial cables. The radio rack is connected to the
server rack through 10 Gigabit/s Ethernet cables. The server
rack includes 12 Dell PowerEdge R340 running Ubuntu 16.04
LTS, where each server controls a subset of the USRPs only.

This testbed is an open space area where the antennas
are located in the laboratory ceiling as shown in Figure

Figure 6. “In-the-wild” Experimental Testbed.



6. The experiments in this testbed are conducted using 20
SDR (software define radios), composed of 13 N210 and 7
X310 USRPs, each equipped with a 1200-6000 MHz CBX
daughterboard with 40 MHz instantaneous bandwidth. The
receiver is an N210 also equipped with a CBX. The testbed
presents heterogeneous obstacles, resulting in a challenging
scenario with rich multipath, external interference, human
mobility, uncontrolled electrical hum, among others.

Figure 7. Non-anechoic chamber antenna setup

Figure 8 shows the anechoic chamber used for our data
collection. This chamber measures 50 feet by 50 feet with
22 feet of headroom, designed to absorb unwanted radio
frequency waves by lining the chamber with hundreds of blue
foam protruding arrowheads. Using this isolated environment
can enhance our understanding of the channel impact since (i)
external RF activity does not affect the ongoing transmission
inside the chamber, thanks to the external Faraday cage;
and (ii) the cones deployed in the chamber absorb signals
generated internally, preventing multipath.

Figure 8. Anechoic Chamber Testbed.

We use four different experimental setups:

• Setup A - In-the-Wild, Different Antennas: devices are
connected to dedicated antennas (one per SDR) deployed
as shown in Figure 7. In this setup, not only do the
SDRs differ in their hardware impairments, but also in
their antenna, distance from the receiver, and experienced
multi-path. The data collection process under this setup
is repeated for ten days;

• Setup B - In-the-Wild, Single Antenna: all devices are
connected to the same antenna, as indicated in Figure 7.
This way, all devices are equally distant from the receiver
and experience similar channel and multi-path conditions.
Data collection is repeated for two days; I/Q samples
collected during the first day are used to train our models.
Instead, data collected on the second day are used for
testing purposes;

• Setup C - Wired Connection: each transmitter is con-
nected to the receiver with a coaxial RF SMA cable and
a 5db attenuator. We use the same cable and attenuator to
connect all SDRs to the receiver one at a time. By using
wired connections, in this setup all transmitters are not

affected by multi-path and experience exactly the same
channel conditions. similarly to Setup B, data collection
is repeated for two days, one for training and one for
testing purposes;

• Setup D - Anechoic Chamber, Single Antenna: device
are located in the anechoic chamber and are connected to
the same transmitting antenna. Data collection has been
performed for one day only.

V. EXPERIMENT RESULTS

A. Setup A: In-the-Wild, Different Antennas

To evaluate the train-and-test-one-day (TTOD) and the train-
one-day-test-another (TOTA) metrics defined in Section III-C,
Figure 9 shows the 10x10 confusion matrices (CMs) represent-
ing the average per-slice accuracy (PSA) of 20 devices over
10 training days using 10 testing days. The Y-axis represents
the training day while the X-axis represents the testing day. To
train our CNNs, we generated 100k slices from each device,
as defined in Figure 4. For our testbed experiments, we used
a slice size of L = 288 I/Q samples, which corresponds to
6 OFDM symbols each containing 48 payload I/Q samples
(6x48= 288 I/Q samples). The set of 100k slices is partitioned
as follows: 70% for training, 20% for validation, and 10% for
testing our models.

Figure 9 shows unequivocally that the CNN trained with
I/Q samples collected one day is not able to generalize to
I/Q samples collected in a different day. That is, the CNN
learns to distinguish the devices based on the channel only.
Indeed, different noise, fading, multipath and interference
conditions establish a unique channel condition for each day.
In all the cases, the TDTA accuracy drops to 5% (i.e., 1/20,
corresponding to random guess), while the TTOD accuracy
remains close to 100%. Overall, the average PSA is pretty
poor: 14.5%, 5% and 14.8%, respectively. This suggest that
the CNN is “overfitting to the channel”, meaning that the CNN
is using the unique channel conditions of each radio, and not
its hardware impairments, as the feature to discriminate them.

Figure 9. ”TDTA” analysis in Setup A with (top) the Baseline and (bottom)
Homegrown CNNs. If X-axis (Testing day) is the same as Y-axis (Training
Day) then it becomes ”TTOD”. From left to right: (a) Equalized (b) Raw I/Q
before FFT, (c) Raw I/Q after FFT.

Interestingly enough, Figure 9 also suggests that there is no
difference between using raw-after-FFT samples and equalized



I/Q samples, since they both show poor TDTA accuracy.
Conversely, the DARPA dataset results shown in Section VI
indicate that when the CNN is trained on one day and tested on
another, the equalized I/Q samples show better performance.
This difference can be explained as follows – in our testbed
experiments, the devices are identical in RF circuitry (i.e.,
same RF daughterboard). This arguably corresponds to the
worst case for radio fingerprinting. On the contrary, in the
DARPA datasets the devices do not have identical RF chips.
In this latter case, therefore, the impairments between the
different devices – which are brought to light by the channel
equalization process – are more evident. Indeed, impairments
of RF circuitry produced by the same manufacturer are similar.
Therefore, they are not different enough to serve as a good
feature to distinguish among different radios.

Figure 10. I/Q constellation in Setup A for devices D1 and D2; (a) D1 before
FFT, (b) D2 before FFT, (c) D1 after FFT, (d) D2 after FFT, (e) D1 Equalized,
(f) D2 Equalized.

Another fundamental result brought to light by Figure 9
is that the raw-before-FFT I/Q samples are not sufficient
to obtain acceptable levels of accuracy. Recall that these
symbols are in the time domain and therefore, I/Q samples
assigned to multiple subcarriers are summed with each other.
Therefore, here the I/Q samples do not contain any useful
data. Differently, the raw-after-FFT I/Q samples represent the
payload symbols we are sending (in our case, BPSK) – thus,
the resulting I/Q samples are much more distinguishable from
each other and the effect of the channel is more evident to
the CNN to learn. Figure 10 shows the I/Q constellations for
two devices in the testbed, and confirms the intuition above.
Indeed, it shows that (i) the raw-before-FFT data “collapses”
around zero in both cases and is thus indistinguishable between
the two devices; (ii) the raw-after-FFT I/Q data still does not
show a clear constellation but the channel impact is more
evident in both cases; (iii) the equalized I/Q data shows clearly
the effect of the channel and the impairments.

Figure 11. “Setup B – In-the-Wild, Single Antenna”. Top, from left to right:
(a) Equalized I/Q TTOD, (b) Raw I/Q after FFT TTOD. Bottom, from left
to right: (c) Equalized I/Q TDTA, (d) Raw I/Q after FFT TDTA.

B. Setup B: Same Antenna and Setup C: Wired

The top and bottom sides of Figure 11 show respectively
the TTOD and the TDTA results obtained on Setup B (Same
Antenna) and with the Homegrown CNN. We plot the same
quantities in Figure 12 for Setup C (Wired). We only show
the results obtained for equalized I/Q and raw-after-FFT I/Q
samples since the raw-before-FFT I/Q results are similar to
those obtained in the raw-after-FFT case. As we can see, the
results confirm that the TDTA performance is not satisfying
in both cases. Overall, in Setup B the TTOD and TDTA
accuracy for equalized I/Q is 83.45% and 8.72% respectively.
The discrepancy between TTOD and TDTA demonstrates that
the CNN is still learning channel conditions.

Particularly, in Setup C we show how exposing all devices
to the same channel conditions (i.e., coaxial RF SMA cable
with 5db attenuator) impacts the fingerprinting results. Here,
there are two interesting aspects that are worth mentioning.
First, Figure 12 clearly shows that the TTOD for raw-after-FFT
data is worse in the wired case than in the wireless one (i.e.,
Setup A (Different Antennas) and Setup B). This means that,
as the channel becomes less evident (i.e., Setup C), the raw-
after-FFT features become less effective. Moreover, we notice
that the TDTA for equalized I/Q data is better in Setup C than
in Setup B. Indeed, the TTOD and TDTA here are 87.41%
and 29.68%, respectively. This suggests that the model learns
better to discern devices from their impairments in the wired
scenario, where channel action becomes a stationary process
for all devices and, therefore, does not represents a relevant
feature to be learned.
C. Setup D: Anechoic Chamber, Single Antenna

The setup consists of 10 USRP transmitters (6 X310 and 4
N210) with one Receiver (N210). The distance between the
transmitter and receiver antennas is fixed and equal to 12 feet
in all transmissions, and all devices uses the same transmitter



Figure 12. “Setup C – Wired Connection”. Top, from left to right: (a)
Equalized I/Q TTOD, (b) Raw I/Q after FFT TTOD. Bottom, from left to
right: (c) Equalized I/Q TDTA, (d) Raw I/Q after FFT TDTA.

antenna one at a time. The aim of using anechoic chamber is to
analyze the performance of radio fingerprinting in a wireless
environment without interference, and to confirm whether we
would obtain results similar to Setup C (Wired). As shown
in Figure 13, the TTOD and TDTA results for Setup D are
similar to those reported for Setup C. Indeed, the equalized
I/Q data results in better TDTA accuracy if compared to Setup
B (Single Antenna).

Figure 13. “Setup D – Anechoic Chamber”. Top, from left to right: (a)
Equalized I/Q TTOD, (b) Raw I/Q before FFT TTOD, (c) Raw I/Q after
FFT TTOD, Bottom, from left to right: (d) Equalized I/Q TDTA, (e) Raw
I/Q before FFT TDTA, (f) Raw I/Q after FFT TDTA.

D. Learning Performance Comparison

In this section we focus on evaluating the learning perfor-
mance by comparing and analyzing the validation loss compar-
ison, and the final prediction/classification results. Figure 14
compares the validation loss during the training process over
different setups for the equalized I/Q model. We also show the
per-transmission accuracy (PTA) comparison between Setup B

Figure 14. Validation loss and PTA% per Experimental Setup.

(Single Antenna) and Setup D (Anechoic Chamber). We notice
that Setup D performs the best, followed by Setup C (Wired)
and Setup B. This supports our results and confirms that the
lowest loss occurs with the wireless channel condition of the
anechoic testbed. In this case, the lack of interference, multi-
path and same channel conditions helped CNN models to
learn the hardware impairments rather than the actual channel
conditions. This is also confirmed by the PTA results, which
show that the PTA is much higher in Setup D.

VI. LARGE-SCALE DATASET RESULTS

In this section, we report the results on the large-scale
dataset provided by DARPA. To analyze the effect of different
parameters on the learning performance, we have split the en-
tire WiFi/ADS-B dataset into a set of different learning tasks,
summarized in Table 1. Specifically, Task A evaluates the
performance as a function of the number of devices (from 100
to 10000, equally split between WiFi and ADS-B), while Task
B assesses the effect of environment conditions on classifier
accuracy, using a dataset of 310k WiFi transmissions generated
by 350 devices. Each subtask aims to simulate a different
environmental condition. Task C includes a dataset of 120k
ADS-B transmissions generated by 100 devices, encountering
high (15.3 to 5.1dB), medium (5.0 to 2.0dB), and low (1.9 to
-13.3dB) SNR levels.

We evaluate the performance of the Baseline and ResNet-
50-1D CNNs on both WiFi and ADS-B transmission. For WiFi
we consider both raw and equalized data. Conversely, thanks to
its simplicity (on-off keying) and lower amount of interference,
we train the ADS-B models on raw I/Q data. Table 2 reports
the per-slice accuracy (PSA) and per-transmission accuracy
(PTA) for each CNN, task and level of equalization. We report
in bold the best performance in each subtask.

As far as Task A (Scalability) is concerned, we notice that
both Baseline and ResNet-50-1D scale well with the number
of devices. Moreover, ResNet-50-1D performs well over raw-
before-FFT data for the WiFi dataset, while Baseline performs
better over equalized data. For the ADS-B dataset, ResNet-50-
1D obtains 77% and 90% accuracy over 5000 and 500 devices,
respectively, while Baseline outperforms ResNet-50-1D over
fewer classes, attaining 88% and 92% accuracy over 250 and
50 devices, respectively.

The results obtained in Task B (Training Data) confirm the
results obtained by using our experimental testbed, and indeed
show that the environmental conditions affect the learning
process significantly. The most interesting result regards Task



Task Description # of Devices
A1 Very High Population 10,000
A2 High Population 1000
A3 Medium Population 500
A4 Low Population 100
B1 Train One Day Test Another 50
B2 Train on a Mix of Days Test on a Mix 100
B3 Train and Test on a Single Day 100
C1 SNR: Train High Test Medium 100
C2 SNR: Train High Test Low 100
C3 SNR: Train Medium Test High 100
C4 SNR: Train Medium Test Low 100
C5 SNR: Train Low Test High 100
C6 SNR: Train Low Test Medium 100

Table 1. Summary of large-scale learning subtasks. Task A measures the
scalability of the model, Task B and C measure the effect of environmental
and channel conditions.

Task

Testing Accuracy
Per-Slice / Per-Transmission Accuracy (PSA/PTA)

WiFi
Raw I/Q before FFT Equalized

Baseline ResNet-50-1D Baseline ResNet-50-1D
A1 0.082 / 0.130 0.164 / 0.262 0.062 / 0.101 0.014 / 0.030
A2 (0.299 / 0.378 0.393 / 0.612 0.327 / 0.434 0.392 / 0.555
A3 0.354 / 0.398 0.467 / 0.629 0.454 / 0.478 0.430 / 0.549
A4 0.335 / 0.575 0.490 / 0.631 0.762 / 0.639 0.699 / 0.637
B1 0.017 / 0.016 0.013 / 0.012 0.232 / 0.335 0.175 / 0.258
B2 0.444 / 0.695 0.520 / 0.811 0.678 / 0.674 0.751 / 0.735
B3 0.310 / 0.598 0.441 / 0.746 0.210 / 0.432 0.308 / 0.542

Table 2. Large-scale DARPA WiFi Dataset Results.

B1 (Train One Day Test Another), which confirms what
experienced in the testbed. Indeed, we experience a drop
in accuracy from 44% PSA in B3 (Train and Test on a
Single Day) to almost 0% in B1 for the ResNet-50-1D CNN
on raw-before-FFT data. For equalized data, we notice that
the drop in accuracy is smaller – from 30% to 17%. This
confirms that equalizing I/Q transmissions indeed improves
the performance, as prediction over raw-before-FFT data is
close to random guessing when raw data is used and testing
is done on days different than the training one. Indeed, notice
that in B1 the PSA increases from almost 0% to 23% and 17%
when equalized I/Q samples are considered. Overall, these
experiments unequivocally conclude that the wireless channel
does impact the accuracy when a large population of device
is considered.

Table 3 shows the results obtained on the subtasks involving
ADS-B. The first important thing to notice here is that the
performance is much better than WiFi. This is mainly thanks to
the simplicity of ADS-B and the presence of less interference
in the ADS-B channel. Interestingly, we also notice that
training the model on high-SNR data and testing on low-SNR
samples (subtask C2) leads to lower accuracy. Instead, when
the opposite is true (subtask C4), we experience high accuracy.
The phenomenon is even more pronounced on Subtask C3,
where we train on medium SNR and test on high SNR, and
C6 , where we train with low SNR and test on medium
SNR, where we observe very high accuracy (92% and 93%,
respectively). This means that adding noise to the training data
makes the CNN less affected by noise in the test set, which
could be further used to increase accuracy in future work.

Task

Testing Accuracy
Per-Slice / Per-Transmission Accuracy (PSA/PTA)

ADS-B - Raw I/Q
Baseline ResNet-50-1D

A1 0.374 / 0.529 0.574 / 0.770
A2 0.665 / 0.826 0.803 / 0.896
A3 0.732 / 0.877 0.646 / 0.813
A4 0.810 / 0.919 0.717 / 0.862
C1 0.375 / 0.526 0.376 / 0.494
C2 0.115 / 0.156 0.104 / 0.132
C3 0.790 / 0.916 0.720 / 0.828
C4 0.378 / 0.600 0.333 / 0.509
C5 0.695 / 0.886 0.567 / 0.693
C6 0.649 / 0.925 0.594 / 0.810

Table 3. Large-scale DARPA ADS-B Dataset Results.

VII. CONCLUSIONS

This paper has presented (i) a large-scale open dataset for
radio fingerprinting collected in diverse environments and rich,
diverse, channel conditions; and (ii) a full-fledged, system-
atic investigation of the impact of the wireless channel on
the accuracy of CNN-based radio fingerprinting algorithms.
Specifically, we have collected more than 7TB of wireless data
obtained from 20 wireless devices over the course of 10 days in
an anechoic chamber, in-the-wild, and with cable connections.
We have also provided an exhaustive evaluation of the impact
of the wireless channel on CNN-based fingerprinting algo-
rithms through the testbed data and a 400GB dataset provided
by DARPA. Experimental results conclude that (i) the wireless
channel impacts the classification accuracy significantly, i.e.,
from 85% to 9% and from 30% to 17% in the experimental
and DARPA dataset, respectively; and that (ii) equalizing I/Q
data can increase the accuracy to a significant extent (i.e., by
23%) when the number of devices increases significantly.
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