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Abstract
Today’s wireless technologies are largely based on inflexible 
designs, which make them inefficient and prone to a vari-
ety of wireless attacks. To address this key issue, wire-
less receivers will need to (i) infer on-the-fly the physical 
layer parameters currently used by transmitters; and if 
needed, (ii) change their hardware and software structures 
to demodulate the incoming waveform. In this paper, we 
introduce PolymoRF, a deep learning-based polymorphic 
receiver able to reconfigure itself in real time based on the 
inferred waveform parameters. Our key technical innova-
tions are (i) a novel embedded deep learning architecture, 
called RFNet, which enables the solution of key wave-
form inference problems, and (ii) a generalized hardware/ 
software architecture that integrates RFNet with radio com-
ponents and signal processing. We prototype PolymoRF on 
a custom software-defined radio platform and show through 
extensive over-the-air experiments that PolymoRF achieves 
throughput within 87% of a perfect-knowledge Oracle sys-
tem, thus demonstrating for the first time that polymorphic 
receivers are feasible.

1. INTRODUCTION
It has been forecast that over 50 billion mobile devices will 
be soon connected to the Internet, creating the biggest net-
work the world has ever seen.3 However, only very recently 
has the community started to acknowledge that squeezing 
billions of devices into tiny spectrum portions will inevi-
tably create disruptive levels of interference. Although 
Mitola and Maguire first envisioned the concept of “cog-
nitive radios” 20 years ago,8 today’s commercial wireless 
devices still use inflexible wireless standards such as Wi-Fi 
and Bluetooth—and thus, are still very far from being truly 
real-time reconfigurable. Just to give an example of the 
seriousness of the spectrum inflexibility issue, DARPA has 
recently invested to launch the spectrum collaboration 
challenge (SC2), where the target is to design spectrum 
access schemes that “[…] best share spectrum with any 
network(s), in any environment, without prior knowledge, 
leveraging on machine-learning techniques.”25

Intuitively, the issues of existing communication sys-
tems could be addressed by allowing transmitters to 
dynamically switch parameters such as carrier frequency, 
FFT size, and symbol modulation without coordination 
with the receiver. This will allow the transmitter efficient 
spectrum occupation using the most appropriate wire-
less scheme at any given moment. Figure 1 shows an 
example of a polymorphic receiver able to infer the cur-
rent transmitter’s physical layer scheme (e.g., OFDM vs. 
narrowband) and the scheme’s parameters (e.g., FFT size, 
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channel, modulation), and then demodulate each portion 
of the signal.

Doing away with explicit coordination and inflexible 
physical layers is the first step toward wireless receivers able 
to self-adapt to demodulate many waveform with a single 
radio interface.15 Yet, despite their compelling necessity, 
these wireless receivers do not exist today. This manuscript 
aims to change the current state of affairs by proposing the 
first demonstration of PolymoRF, the first polymorphic wire-
less receiver. Achieving this goal required us to address a set 
of key research challenges summarized below:

(1) � Keeping up with the transmitter. A crucial aspect is the 
real-time parameter inference. In practical systems, 
however, transmitters may choose to switch its param-
eter configuration in the order of milliseconds (e.g., 
frequency hopping, rate adaptation). For example, if 
the transmitter chooses to switch modulation every 
100ms, the learning model should run in (much) less 
than 100 ms to predict the parameters and morph the 
receiver into a new configuration. To this end, we will 
show in Section 5.5 that CPU latency is several orders 
of magnitude greater than what is required to sustain 
realistic sampling rates from the RF interface. Thus, 
we need hardware-based designs to implement low-
latency knowledge extraction techniques.

(2) � Creating learning architectures for the embedded RF 
domain. Recent advances in RF deep learning10-12, 14 
have demonstrated that convolutional neural net-
works (ConvNets) may be applied to analyze RF data 
without feature extraction and selection algorithms.4 
Moreover, ConvNets present a number of characteris-
tics (discussed in Section 3) that make them particu-
larly desirable from a hardware implementation 
perspective. However, these solutions cannot be 
applied to implement real-time polymorphic wireless 
communications—as shown in Section 5.5, existing 
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Figure 1. Example of a self-adaptive polymorphic receiver.
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latency of RFNet by more than 50% with respect to the 
unoptimized version, with only 7% increase of hard-
ware resource consumption. Finally, we design and 
implement the device-tree entries and Linux drivers 
enabling the system to utilize RFNet and other key 
hardware peripherals.

(3) � We prototype PolymoRF on a ZYNQ-7000 system-on-
chip (SoC) and analyze its performance on a scheme 
where the transmitter can switch among three FFT 
sizes and three symbol modulation schemes without 
explicit notification to the receiver. A demo video of 
PolymoRF where the transmitter switches FFT size 
every 0.5s is available at https://youtu.be/5vf_pb0nvKk. 
We believe ours is the first demonstration of real-time 
OFDM reconfigurability without explicit transmitter/
receiver coordination. Experiments on both line-of-
sight (LOS) and non-line-of-sight (NLOS) channel con-
ditions show that the system achieves at least 87% of 
the throughput of a perfect knowledge—and thus, 
unrealistic—Oracle OFDM system, thus proving the 
feasibility of polymorphic receivers.

2. PolymoRF: AN OVERVIEW
The primary operations performed by the PolymoRF plat-
form are summarized in Figure 2. In a nutshell, PolymoRF 
can be considered as a full-fledged learning-based software-
defined radio architecture where both the inference system 
and the demodulation strategy can be morphed into new 
configurations at will.

We provide a walk-through of the main operations per-
formed by PolymoRF with the help of Figure 2. Although for 
simplicity we refer to specific hardware equipment and cir-
cuits in our explanation, we point out that the building blocks 
of our platform design (BRAMs, DMA, FIFOs, etc.) can be 
implemented in any commercially available FPGA platform.

We assume the transmitter may transmit by choosing 
among a discrete set of physical layer parameters that are 
known at the receiver’s side. We define as Y a tuple of such 
physical layer parameters, which may be changed at will by 
the transmitter but not before Tsw seconds between each 
change, which we refer to a switching time. For the sake of 
generality, in this paper we will not assume any particular 
strategy in the transmitter’s parameter choice, which can be 
driven by a series of factors (including anti-jamming strat-
egy, noise avoidance, throughput optimization, and so on) 

art10, 12 utilizes general-purpose architectures with a 
very high number of parameters, requiring hardware 
resources and latency that go beyond what is accept-
able in the embedded domain. This crucial issue calls 
for novel, RF-specific, real-time architectures. We are 
not aware of learning systems tested in a real-time 
wireless environment and used to implement infer-
ence-based wireless systems.

(3) � System-level feasibility of polymorphic platforms. It is yet 
to be demonstrated whether polymorphic platforms 
are feasible and effective. This is not without a rea-
son—from a system perspective, it required us to 
tightly interconnect traditionally separated compo-
nents, such as CPU, RF front-end, and embedded 
operating system/kernel, to form a seamlessly run-
ning low-latency learning architecture closely inter-
acting with the RF components and able to adapt at 
will its hardware and software based on RF-based 
inference. Furthermore, since polymorphic wireless 
systems are subject to inference errors, we need to test 
its performance against a perfect knowledge (thus, 
ideal and not implementable) system.

1.1. Technical contributions
This paper’s key innovation is to finally bridge the gap 
between the extensive theoretical research on cognitive 
radios and the associated system-level challenges, by dem-
onstrating that inference-based wireless communications 
are indeed feasible on off-the-shelf embedded devices. 
Beyond the examples and the evaluation conducted in 
Section 5, the main purpose of this work is to provide a 
blueprint for next-generation wireless receivers, where 
their radio hardware and software are not protocol-specific, 
but instead spectrum-driven and adaptable on-the-fly to 
different waveforms.

We summarize our main technical contributions as 
follows:

(1) � We design a novel learning architecture called RFNet, 
specifically and carefully tailored for the embedded RF 
domain. Our key intuition in RFNet is to arrange I/Q 
samples to form an “image” that can be effectively ana-
lyzed by the ConvNet filters. This operation produces 
high-dimensional representations of small-scale transi-
tion in the I/Q complex plane, which can be leveraged to 
efficiently solve a wide variety of complex RF classifica-
tion problems such as RF modulation classification. 
Extensive experimental evaluation indicates that a pipe-
lined version of RFNet significantly reduces latency with 
respect to a CPU implementation;

(2) � We propose a general-purpose hardware/software 
architecture for software-defined radios that enables 
the creation of custom polymorphic wireless systems 
through RFNet. Then, we implement a multipurpose 
library based on high-level synthesis (HLS) that trans-
lates an RFNet model implemented in software to a 
circuit implemented in the FPGA portion of the SoC. 
Moreover, we leverage key optimization strategies 
such as pipelining and unrolling to further reduce the 
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Figure 2. Modules and operations of PolymoRF.
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that will be considered as out of the scope of this paper, 
whose main focus is instead on the receiver’s side.

(1) � Reconfigurable radio front-end. The RF signal is 
received (step 1) through a reconfigurable RF front-
end. In our prototype, we used an AD93611 radio 
interface, which supports frequency range between 70 
MHz and 6.0 GHz and channel bandwidth between 
200 kHz and 56 MHz. We chose the AD9361 because 
it is commonly used in software-defined radio sys-
tems—indeed, it is also used by USRPs such as the 
E310 and B210. Moreover, the AD9361 provides basic 
FPGA reference designs and kernel-space drivers to 
ease prototyping and extensions. Perhaps more 
importantly, the AD9361 local oscillator (LO) fre-
quency and RF bandwidth can be reconfigured at 
will through CPU registers.

(2) � Conversion from RF to FPGA domain. The AD9361 pro-
duces streams of I/Q samples of 200M samples/second— 
hence, it is clocked at 200 MHz. Since the AD9361 
clock would be too fast for the other circuits in the 
FPGA, we implemented a FIFO to adapt the speed of 
samples from the AD9361 to the 100 MHz clock fre-
quency used by the other circuits in the FPGA (step 2). 
We then use a direct memory access (DMA) core to 
store the stream of I/Q samples to a buffer in the 
DRAM (step 3). The use of DMA is crucial as the CPU 
cannot do the transfer itself, since it would be fully 
occupied for the entire duration of the read/write 
operation and thus unavailable to perform other 
work. Therefore, we wrote a custom DMA driver to 
periodically fill a buffer of size B residing in the DRAM 
with a subset of I/Q samples coming from the FIFO.

(3) � Learning and receiver polymorphism. After the buffer 
has been replenished, its first X I/Q samples are sent 
to a BRAM (step 4) constituting the input to RFNet, a 
novel learning architecture based on ConvNets. This 
circuit is the fundamental core of the PolymoRF sys-
tem; therefore, we will dedicate Sections 3 and 4 to 
discuss in detail its architecture and implementa-
tion, respectively. The parameters of RFNet are read 
by an additional BRAM (step 5), which in effect allows 
the reconfiguration of RFNet to address multiple RF 
problems according to the current platform need. As 
explained in Section 3, RFNet produces a probability 
distribution over the transmitter’s parameter set Y. 
After RFNet has inferred the transmitter’s parame-
ters, it writes on a block-RAM (BRAM) its probability 
distribution (step 6). Then, the baseband DSP logic 
(which may be implemented in both hardware and 
software) reads the distribution from the BRAM (step 
7) selects the parameter set with highest probability 
and “morphs” into a new configuration to demodu-
late the I/Q samples in B (step 8).

3. LEARNING SYSTEM: RFNet
We first motivate the use of convolutional neural networks 
for RFNet, we discuss some RF-specific learning challenges, 
and then we describe in details the RFNet input construction 

and its complete architecture.

(1) � Why using deep learning and not machine learning? 
Deep learning relieves from the burden of finding 
the right “features” characterizing a given wireless 
phenomenon. At the physical layer, this is a key 
advantage for the following reasons. First, deep 
learning offers high-dimensional feature spaces. In 
particular, O’Shea et al.12 have demonstrated that on 
the 24-modulation dataset considered, deep learning 
models achieve on the average about 20% higher clas-
sification accuracy than legacy learning models 
under noisy channel conditions. Second, automatic 
feature extraction allows to reuse the same hardware 
circuit to address different learning problems. 
Critically, this allows to keep both latency and energy 
consumption constant, which are particularly critical 
in wireless systems. Third, deep learning algorithms 
can be fine-tuned by performing batch gradient 
descent on fresh input data, avoiding manual re-tun-
ing of the feature extraction algorithms.

(1) � Why using ConvNets for wireless deep learning? There 
are several primary advantages that make the usage 
of ConvNet-based models particularly desirable for 
the embedded RF domain. First, convolutional filters 
are designed to interact only with a very small portion 
of the input. We show in Section 5.3 that this key 
property allows achieving significantly higher accu-
racy than traditional neural networks. Perhaps even 
more importantly, ConvNets are scalable with the 
input size. For example, for a 200 × 200 input and a 
DL with 10 neurons, a traditional neural network will 
have 2002 ⋅ 10 = 400k weights, which implies a mem-
ory occupation of 4 ⋅ 400k = 16Mbytes to store the 
weights of a single layer (i.e., a float number for each 
weight). Clearly, this is unacceptable for the embed-
ded domain, as the network memory consumption 
would become intractable as soon as several DLs are 
stacked on top of the other.

Moreover, ConvNet filtering operations can be made 
low latency by parallelization, which makes them par-
ticularly suitable to be optimized for the RF domain. 
Finally, we show in Section 5 that the same ConvNet 
architectures can be reused to address different RF 
classification problems (e.g., modulation classifica-
tion in single- and multicarrier systems), as long as 
the ConvNet is provided appropriate weights through 
training. Our ConvNet hardware design (Section 4.1) 
has been specifically designed to allow seamless 
ConvNet reconfiguration and thus solving different 
RF problems according to the system’s needs.

(2) � RF-specific learning challenges. There are a number of 
key challenges in RF learning that are substantially 
absent in the CV domain. Among others, we know that 
RF signals are continuously subject to dynamic (and 
usually unpredictable) noise/interference coming 
from various sources. This may decrease the accuracy 
of the learning model. For example, portions of a QPSK 
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transmission could be mistaken for 8PSK transmis-
sions since they share part of their constellations. We 
address the above core design issues with the follow-
ing intuitions. First, although RF signals are affected 
by fading/noise, in most practical cases their effect can 
be considered as constant over small intervals. Second, 
though some constellations are similar to each other, 
the transitions between the symbols of the constellations 
are distinguishable when the waveform is sampled at a 
higher sampling rate than the one used by the trans-
mitter. Third, convolution operations are equivariant 
to translation, so they can recognize I/Q patterns 
regardless of where they occur.

(3) � RFNet input construction. By leveraging these key con-
cepts, we can design a learning system that distin-
guishes waveforms by recognizing transitions in the 
I/Q complex plane regardless of where they happen, by 
leveraging the shift-invariance property of convolu-
tional layers. More formally, let us consider a discrete-
time complex-valued I/Q sequence s[k], where k ≥ 0. 
Let us consider M = W ⋅ H consecutive I/Q samples s[  j ], 
0 ≤ j ≤ W ⋅ W, where W and H are the width and height 
of the input tensor. The input tensor T, of dimension 
W × H × 2, is constructed as follows:

	
� (1)

By construction, it follows that T [r + 1, c] = s[(r + 1) ⋅ 
W + c] = s[r⋅W+c+W], meaning that (i) I/Q samples in adja-
cent columns will be spaced in time by a factor of 1, and 
(ii) I/Q samples in adjacent rows will be spaced in time by 
a factor of W; moreover, (iii) our input tensors have depth 
equal to 2, corresponding to the I and Q data, respectively, 
which will allow the RFNet filters to examine each element 
of the input tensor without decoupling the I and Q compo-
nents of the RF waveform. Figure 3 depicts an example of a 
2 × 4 and 1 × 3 filters operating on a waveform.

4. PolymoRF: HW/SW ARCHITECTURE
This section presents the hardware and driver design and 
implementation of our PolymoRF system. We discuss the 
design, hardware implementation, and main operations of 
RFNet in Section 4.1 (Figure 4).

4.1. RFNet: Architecture and operations
(1) � Design constraints. One of the core design issues to 

address is ensuring that the same RFNet circuit can be 
reused for multiple learning problems and not just one 
architecture. For example, the wireless node might want 
to classify only specific properties of an RF waveform, 
for example, classify only modulation since the FFT size 
is already known. This requires reconfigurability of the 
model parameters, as the device’s hardware constraints 
may not be able to accommodate multiple learning 
architectures. In other words, we want RFNet to be able 
to operate with a different set of filters and weight 
parameters according to the circumstances. For this 
reason, we have used high-level synthesis (HLS) to 
design a library that translates a Keras-compliant RFNet 
into an FPGA-compliant circuit. HLS interprets an algo-
rithmic description of a desired behavior (e.g., C/C++) 
and creates a model written in hardware description 
language (HDL) that can be executed by the FPGA.20

(2) � Circuit design. Figure 5 shows a block scheme of our 
HLS-based RFNet circuit and its main interactions 
with the CPU and other FPGA components. We also 
provide an example with some numbers to ease pre-
sentation. The main feature of our RFNet implemen-
tation is its modularity-indeed, the circuits 
implementing each layer are independent from each 
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system-on-chip (SoC), which is a circuit integrating CPU, 
FPGA, and I/O all on a single substrate.9 We chose an SoC 
since it provides significant flexibility in the FPGA portion 
of the platform, thus allowing us to fully evaluate the trade-
offs during system design. Moreover, the Zynq-7000 fully 
supports embedded Linux, which in effect makes the ZC706 
a good prototype for a wireless platform. Our Zynq-7000 
contains two ARM Cortex-A9 MPCore CPUs and a Kintex-7 
FPGA,21 running on top of a Xilinx ZC706 evaluation board.22

For both intra-FPGA and FPGA-CPU data exchange, we 
use the Advanced eXtensible Interface (AXI) bus specifica-
tion.23 In the AXI standard, the data is exchanged during 
read or write transactions. In each transaction, the AXI mas-
ter is charged with initiating the transfer; the AXI slave, in 
turn, is tasked with responding to the AXI master with the 
result of the transaction (i.e., success/failure). An AXI mas-
ter can have multiple AXI slaves and vice versa, according to 
the specific FPGA design. Multiple AXI masters/slaves can 
communicate with each other by using AXI interconnects. 
Specifically, AXI-Lite is used for register access and config-
ures the circuits inside the FPGA, while AXI-Stream is used 
to transport high-bandwidth streaming data inside the 
FPGA. AXI-Full is instead used by the CPU to read/write con-
secutive memory locations from/to the FPGA.

To study PolymoRF under realistic channel environments, 
we have used the experimental setup shown in Figure 6. 
These scenarios investigate a line-of-sight (LOS) configura-
tion where the transmitter is placed approximately 3 m from 
the receiver, and a challenging non-line-of-sight (NLOS) 
channel condition where the transmitter is placed at 7 m 
from the receiver and in the presence of several obstacles 
between them. Thus, the experiments were performed in 
a contested wireless environment with severe interference 
from nearby Wi-Fi devices as well as multipath effect.

5.2. Data collection and training process
As far as the data collection and testing process is concerned, 
we first constructed a ∼10GB dataset by collecting waveform 
data in the line-of-sight (LOS) configuration, and then used 
this data to train RFNet through Keras. Then, we tested our 
models on live-collected data in both LOS and NLOS condi-
tions. The transmitter radio used was a Zedboard equipped 
with an AD9361 as RF front-end and using Gnuradio for base-
band processing. Waveforms were transmitted at center fre-
quency of 2.432 GHz (i.e., Wi-Fi’s channel 5).

To train RFNet, we use an 2 regularization parameter 
l = 0.0001. We also use an Adam optimizer with a learning 

other, which allows for ease of parallelization and 
transition from HLS to HDL. Consecutive layers in 
RFNet exchange data through high-speed AXI-Stream 
interfaces that then store the results of each layer in a 
FIFO, read by the next layer. Our architecture uses a 
32-bit fixed point representation for real numbers, 
with 10 bits dedicated to the integer portion. We 
chose fixed point instead of floating point to decrease 
drastically computation and hardware architecture 
complexity, as we do not need the precision of float-
ing point arithmetic. Another key advantage of our 
implementation is that it clearly separates the com-
putation from the parameters, which allows for seam-
less real-time reconfigurability. This is achieved by 
writing the parameters in a BRAM accessible by the 
CPU and by the RFNet circuit.

(3)  Main operations. The first operation is to write the 
RFNet’s parameters into a BRAM through the user-
space PolymoRF controller (step 1). These parameters 
are the weights of the convolutional layer filters and 
the weights of the dense layers. Since we use fixed 
point architecture, each parameter is converted into 
fixed point representation before being written to the 
BRAM. As soon as a new input buffer B (of size 13 in 
our example) has been replenished, the controller 
writes the RFNet input (the first 8 I/Q samples in our 
example) into the input BRAM (step 2). RFNet opera-
tions are then started by writing into an AXI-Lite regis-
ter (step 3) through a customized kernel-level Linux 
driver. Once the results have been written in the out-
put BRAM (step 4), RFNet writes an acknowledgement 
bit into another AXI-Lite register, which signals the 
controller that the output is ready. Then, the control-
ler reads the output (in our example, class 3 has the 
highest probability) and sends the entire buffer B 
through a Linux FIFO to the PolymoRF receiver (step 
5), which is currently implemented in Gnuradio soft-
ware. The receiver has different FIFOs, each for a 
parameter set. Whenever a FIFO gets replenished, the 
part of the flow graph corresponding to that parame-
ter set activates and demodulates the I/Q samples 
contained in the buffer B. Notice that for efficiency rea-
sons the receiver chains do not run when the FIFO is 
empty, therefore only one receiver chain can be active 
at time.

5. EXPERIMENTAL RESULTS
We first discuss details on our PolymoRF prototype in Section 
5.1, and then discuss the data collection and training pro-
cess in Section 5.2. We then investigate the performance 
of RFNet in Section 5.3 on a single-carrier system. Then, we 
implement and test the throughput performance on a multi-
carrier polymorphic OFDM system in Section 5.4. Finally, we 
report the latency and hardware performance of PolymoRF 
in Section 5.5.

5.1. Protoype and experimental setup
Our prototype is entirely based on off-the-shelf equipment. 
Specifically, we use a Xilinx Zynq-7000 XC7Z045–2FFG900C 
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Figure 6. (left) Placement of the radios for experimental evaluation; 
(right) experimental setting.
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simpler architecture. This is due to the fundamental 
difference between how the convolutional layers in 
PolymoRF and Linear process I/Q samples.

(2) � Hyper-parameter evaluation. We study the impact of 
the number of convolutional layers M and dense lay-
ers K, as well as the input size (W) and filter size (F) on 
the performance of RFNet. Figure 8 shows accuracy 
as a function of W and H, for hyper-parameters M = 1, 
2 and C = 10, 25, 50. The results conclude that 
increasing C does improve the performance but up 
to a certain extent. Indeed, we notice that switching 
to C = 50 does not improve much the performance, 
especially when M = 2. This is because the number of 
distinguishing I/Q patterns is limited in number 
among different modulations, and thus, the filters in 
excess end up learning similar patterns. 
Furthermore, increasing W and H increases accuracy 
significantly, since a larger input size allows com-
pensating for the adverse channels/noise condi-
tions. Furthermore, Figure 9 illustrates the impact of 
K. Figure 9 suggests that the accuracy does not 
increase when adding a dense layer, regardless of its 
size, which indicates the correctness of our choice to 
exclude dense layers.

(3) � Impact of the sampling rate. We investigate the impact 
of the transmitter’s sampling rate in Figure 10, 
where we show the classification accuracy for differ-

rate of l = 10–4 and categorical cross-entropy as a loss func-
tion. All architectures are implemented in Python, on top of 
the Keras framework and with Tensorflow as the backend 
engine.

5.3. Single-carrier evaluation
We consider the challenging problem of joint modulation 
and channel recognition in a single-carrier system where (i) 
modulation is chosen among BPSK, QPSK, 8PSK, 16-QAM, 
32-QAM, and 64-QAM; (ii) spectrum is shifted of 0, 1 KHz, 
and 2 KHz from its center frequency. Due to space limita-
tions, we only report results on the LOS scenario for the 
single-carrier scenario and report in Section 5.4 the perfor-
mance of RFNet on the NLOS scenario with the multicarrier 
OFDM system.

(1) � Comparison with existing architectures. We compare 
RFNet to,10, 12 which is to the best of our knowledge10, 

12 the current state of the art in RF waveform classifi-
cation using ConvNets. This approach, called for 
simplicity Linear, considers an input tensor of 
dimension 1 × W ⋅ H × 2 and convolutional layers with 
filters of dimension 1 × F × 2. Thus, the filters in the 
first convolutional layer perform linear convolution 
over a set of F consecutive I/Q samples. We attempted 
to train the architecture in12, which has M = 7 convo-
lutional layers with C = 64 filters each and K = 2 dense 
layers with 128 neurons each. However, due to its 
huge dimensions, we were not able to synthesize this 
architecture on our test bed. Therefore, we com-
pared RFNet with the architecture in,10 that is, M = 2 
convolutional layers with C = 25,680 and K = 1 with 
256 neurons. For fair comparison with Linear, we 
selected the closest input size to ours (i.e., 1 × 128 vs. 
10 × 10, 1 × 400 vs. 20 × 20, 1 × 900 vs. 30 × 30).

Figure 7 shows the test-set accuracy obtained for a 
subset of the considered architectures, where RFNet 
was trained with M = 1 convolutional layer with C = 
25 filters, and no dense layer (K = 0). The obtained 
results indicate that traditional dense networks can-
not recognize complex RF waveforms, as they attain 
slightly more accuracy (8%) than the random-guess 
accuracy (5.5%)—regardless of the number of layers. 
This is because dense layers are not able to capture 
localized, small-scale I/Q variations in the input 
data, which is instead done by convolutional layers. 
Moreover, Figure 7 indicates that RFNet has similar 
accuracy as obtained by Linear, despite using a much 
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Figure 7. Comparison among RFNet, Dense, and Linear.10
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Figure 8. (top) Test set classification accuracy vs. input size W/H 
vs. M, with K = 0 (no dense layer); (bottom) confusion matrices as 
function of M, W, and H.
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Figure 9. Accuracy vs. number of filters vs. dense layer size.
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following, we use the C = 25,25, 20 × 20, pipelined RFNet 
architecture, which presents latency of about 17 ms (see 
Section 5.5). In these experiments, we set (i) the transmit-
ter’s sampling rate to 5M samples/sec; PolymoRF’s buffer 
size B to 250k I/Q samples; (iii) the switching time of the 
transmitter to 250 ms. Thus, RFNet is run approximately 
five times during each switching time.

The most critical aspect to be evaluated is how Poly-
OFDM, an inference-based system, compares with an ideal 
system that has perfect knowledge of the modulation and 
FFT size being used by the transmitter at each time, which 
we call for simplicity Oracle. Although Oracle cannot be 
implemented in practice, we believe this experiment is 
crucial to understand what is the throughput loss with 
respect to a system where the physical layer configuration 
is known a priori. In Figure 12, we show the comparison 
between Oracle and Poly-OFDM as a function of the FFT 
size and the symbol modulation. As we notice, the overall 
throughput results decrease in the NLOS scenario, which is 
expected given the impairments imposed by the challeng-
ing channel conditions. On the other hand, the results in 
Figure 12 confirm that Poly-OFDM is able to obtain similar 
throughput performance with that of a traditional OFDM 
system, obtaining on the average 90% and 87% throughput 
of that of the traditional system.

5.5. RFNet latency evaluation and comparison
Table 1 compares latency, the number of parameters, and 
BRAM occupation of RFNet vs. a C++ implementation run-
ning in the CPU of our test bed. As we can see, RFNet con-
sumes at most 34% of the available BRAM of the platform. 
Moreover, Table 2 shows the comparison between the pipe-
lined version of the ConvNet circuits and the CPU latency, 
as well as the look-up table (LUT) consumption increase 
with respect to the unpipelined version. Table 2 concludes 
that on the average, our parallelization strategies bring 
close to 60% and 100% latency reduction with respect to the 
unoptimized and CPU versions, respectively, with a LUT 
utilization increase of about 7% on the average.

ent W, H, and C values. We also show the confusion 
matricesa for the W, H = 10, C = 50 architectures in 
Figure 11. As expected, these results confirm that the 
performance of RFNet decreases as the transmitter’s 
sampling rate increases. This is because, as shown in 
Section 3 RFNet learns the I/Q transitions between 
the different modulations. Therefore, as the trans-
mitter’s sampling rate increases, the model will have 
fewer I/Q samples between the constellation points. 
Indeed, the confusion matrices show that with 5 MS/s 
the model becomes further confused with QAM con-
stellations, and with 10 MS/s higher-order PSKs and 
QAMs “collapse” onto the lowest-order modulations.

(4) � Remarks. The above results imply that oversampling 
the signal leads to better modulation classification 
accuracy. However, we would like to point out that 
oversampling does not mean that the physical layer 
has to process more data—indeed, the extra samples 
can be dropped when going through the demodula-
tion chain, while the oversampled I/Q signal can be 
forwarded to RFNet for classification.

5.4. Multicarrier evaluation
We evaluated PolymoRF on an OFDM system (in short, 
Poly-OFDM) which supports three different FFT sizes 
(64, 128, and 256) and three different symbol modula-
tions in the FFT bins (BPSK, QPSK, and 8PSK), creating 
in total a combination of nine different parameter sets 
that are switched pseudo-randomly by the transmitter. A 
demo video where the transmitter switches FFT size every 
0.5s is available at https://youtu.be/5vf_pb0nvKk. In the 

a	 Class labels are ordered by modulation and frequency shift, that is, from 
“BPSK, 0 KHz”, “BPSK, 1 KHz”, … to “64-QAM, 2 KHz”.
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6. RELATED WORK
Learning-based radios are envisioned to be able to auto-
matically infer the current spectrum status in terms of occu-
pancy,17 interference,2 and malicious activities.5 Most of the 
existing work is based on low-dimensional machine learn-
ing,4, 16, 24 which requires the cumbersome manual extrac-
tion of very complex, ad hoc features from the waveforms. 
For this reason, deep learning has been proposed as a via-
ble alternative to traditional learning techniques.7 The key 
problem of RF modulation recognition through deep learn-
ing has been extensively investigated.6, 11, 12, 18, 19 The seminal 
work by O’Shea et al.12 proposed ConvNets-based to address 
the issue. However, the authors do not address the issue 
of what to do with the inferred RF information. Moreover, 
the aforesaid work proposes models leveraging a significant 
number of parameters, thus ultimately not applicable to 
real-time RF settings. Recently, Restuccia and Melodia13 
have demonstrated the need for real-time hardware- 
based RF deep learning. However, the main limitation of 
this study13 is that it focused on the learning aspect only, 
ultimately not addressing the problem of connecting real-
time inference with receiver reconfigurability.

7. CONCLUSION
This paper has proposed PolymoRF, a prototype that can 
be reused to develop and test novel polymorphic wireless 
communication systems. One of the key insights brought 
by our experimental evaluation is that the RF channel may 
impact the performance of RFNet to a significant extent. 
To this end, we can (i) train different learning models for 
different channels and reconfigure the weights of RFNet 
in the FPGA accordingly; and (ii) apply small, controlled 
modifications to the RF signal at the transmitter’s side 
to compensate for the current RF channel condition. 
Another core aspect is the impact of polymorphism on the 
effectiveness of smart jamming attacks. We are conscious 
that the aforesaid issues are definitely worth investigat-
ing; however, they deserve separate papers and are the 
subject of our ongoing work.
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To give the reader a perspective of the amount of resources 
consumed on the FPGA, Figure 13 shows the FPGA imple-
mentation of respectively 10 × 10 and 20 × 20 RFNet model, 
both pipelined and with C = 25,25 architecture, where we 
highlight and color the resource consumption of RFNet 
with respect to the AD9361 circuitry. Figure 13 indicates 
that the resource consumption of the RFNet circuit is sig-
nificantly lesser than the AD9361 one in the 10 × 10 case and 
becomes comparable with the 20 × 20 architecture. In any 
case, the overall resource consumption of our FPGA designs 
is approximately 50% of the total FPGA resources.

Model Input
Latency 

(ms) Params (k) BRAM (%)

RFNet C = 25 10 × 10
20 × 20
30 × 30

2.918
26.55
93.35

∼11
∼45
∼81

1
7

15

RFNet C = 50 10 × 10
20 × 20
30 × 30

5.835
53.11

233.3

∼23
∼90
∼203

3
14
29

RFNet C = 25,25 10 × 10
20 × 20
30 × 30

6.704
38.41

144.9

∼10
∼17
∼34

2
8

17

RFNet C = 50,50 10 × 10
20 × 20
30 × 30

21.41
100.3
336.9

∼31
∼40
∼81

4
16
34

Table 1. Latency/hardware consumption evaluation.

Model Input CPU (ms)
Pipelined 

(ms) LUT (%)

RFNet C = 25 10 × 10
20 × 20
30 × 30

49.31
478.4

1592

1.19
8.077

25.54

+3
+7
+9

RFNet C = 50 10 × 10
20 × 20
30 × 30

106.4
934.2

3844

2.381
16.15
63.81

+6
+12
+20

RFNet C = 25,25 10 × 10
20 × 20
30 × 30

122.1
677.9

2354

3.959
16.29
49.57

+1
+4
+7

RFNet C = 50,50 10 × 10
20 × 20
30 × 30

363.9
1826
5728

13.51
48.87

131.7

+2
+7
+11

Table 2. Pipelined vs. CPU latency.
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Figure 13. PolymoRF FPGA implementations.
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Without a clear understanding of the 
human side of virtual reality, 

the experience will always fail. 
“Dr. Jerald has recognized a great need in our 
community and filled it. The VR Book is a scholarly 
and comprehensive treatment of the user interface 
dynamics surrounding the development and 
application of virtual reality. I have made it a required 
reading for my students and research colleagues. Well 
done!”
- Professor Tom Furness, University of Washington
VR Pioneer and Founder of HIT Lab International
and the Virtual World Society




