
SEPTEMBER 2022 | VOL. 65 | NO. 9 | COMMUNICATIONS OF THE ACM 83

Polymorphic
Wireless Receivers
By Francesco Restuccia and Tommaso Melodia

DOI:10.1145/3547131

Abstract
Today’s wireless technologies are largely based on inflexible
designs, which make them inefficient and prone to a vari-
ety of wireless attacks. To address this key issue, wire-
less receivers will need to (i) infer on-the-fly the physical
layer parameters currently used by transmitters; and if
needed, (ii) change their hardware and software structures
to demodulate the incoming waveform. In this paper, we
introduce PolymoRF, a deep learning-based polymorphic
receiver able to reconfigure itself in real time based on the
inferred waveform parameters. Our key technical innova-
tions are (i) a novel embedded deep learning architecture,
called RFNet, which enables the solution of key wave-
form inference problems, and (ii) a generalized hardware/
software architecture that integrates RFNet with radio com-
ponents and signal processing. We prototype PolymoRF on
a custom software-defined radio platform and show through
extensive over-the-air experiments that PolymoRF achieves
throughput within 87% of a perfect-knowledge Oracle sys-
tem, thus demonstrating for the first time that polymorphic
receivers are feasible.

1. INTRODUCTION
It has been forecast that over 50 billion mobile devices will
be soon connected to the Internet, creating the biggest net-
work the world has ever seen.3 However, only very recently
has the community started to acknowledge that squeezing
billions of devices into tiny spectrum portions will inevi-
tably create disruptive levels of interference. Although
Mitola and Maguire first envisioned the concept of “cog-
nitive radios” 20 years ago,8 today’s commercial wireless
devices still use inflexible wireless standards such as Wi-Fi
and Bluetooth—and thus, are still very far from being truly
real-time reconfigurable. Just to give an example of the
seriousness of the spectrum inflexibility issue, DARPA has
recently invested to launch the spectrum collaboration
challenge (SC2), where the target is to design spectrum
access schemes that “[…] best share spectrum with any
network(s), in any environment, without prior knowledge,
leveraging on machine-learning techniques.”25

Intuitively, the issues of existing communication sys-
tems could be addressed by allowing transmitters to
dynamically switch parameters such as carrier frequency,
FFT size, and symbol modulation without coordination
with the receiver. This will allow the transmitter efficient
spectrum occupation using the most appropriate wire-
less scheme at any given moment. Figure 1 shows an
example of a polymorphic receiver able to infer the cur-
rent transmitter’s physical layer scheme (e.g., OFDM vs.
narrowband) and the scheme’s parameters (e.g., FFT size,

The original version of this paper was published in
Proceedings of the 21st Int. Symp. on Theory, Algorithmic
Foundations and Protocol Designs for Mobile Networks and
Mobile Computing (Oct. 2020), 271–280.

channel, modulation), and then demodulate each portion
of the signal.

Doing away with explicit coordination and inflexible
physical layers is the first step toward wireless receivers able
to self-adapt to demodulate many waveform with a single
radio interface.15 Yet, despite their compelling necessity,
these wireless receivers do not exist today. This manuscript
aims to change the current state of affairs by proposing the
first demonstration of PolymoRF, the first polymorphic wire-
less receiver. Achieving this goal required us to address a set
of key research challenges summarized below:

(1) � Keeping up with the transmitter. A crucial aspect is the
real-time parameter inference. In practical systems,
however, transmitters may choose to switch its param-
eter configuration in the order of milliseconds (e.g.,
frequency hopping, rate adaptation). For example, if
the transmitter chooses to switch modulation every
100ms, the learning model should run in (much) less
than 100 ms to predict the parameters and morph the
receiver into a new configuration. To this end, we will
show in Section 5.5 that CPU latency is several orders
of magnitude greater than what is required to sustain
realistic sampling rates from the RF interface. Thus,
we need hardware-based designs to implement low-
latency knowledge extraction techniques.

(2) � Creating learning architectures for the embedded RF
domain. Recent advances in RF deep learning10-12, 14
have demonstrated that convolutional neural net-
works (ConvNets) may be applied to analyze RF data
without feature extraction and selection algorithms.4
Moreover, ConvNets present a number of characteris-
tics (discussed in Section 3) that make them particu-
larly desirable from a hardware implementation
perspective. However, these solutions cannot be
applied to implement real-time polymorphic wireless
communications—as shown in Section 5.5, existing

PolymoRF
Receiver

OFDM
FFT 64
QPSK

Narrowband
Channel 2

8PSK

Parameter
Inference

(FFT 64, QPSK)

(Channel 2, 8PSK)

Reconfigurable
Narrowband Demod

Reconfigurable
OFDM Demod

Figure 1. Example of a self-adaptive polymorphic receiver.

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3547130 tp

https://dx.doi.org/10.1145/3547131
https://doi.acm.org/10.1145/3547130

research highlights

84 COMMUNICATIONS OF THE ACM | SEPTEMBER 2022 | VOL. 65 | NO. 9

latency of RFNet by more than 50% with respect to the
unoptimized version, with only 7% increase of hard-
ware resource consumption. Finally, we design and
implement the device-tree entries and Linux drivers
enabling the system to utilize RFNet and other key
hardware peripherals.

(3) � We prototype PolymoRF on a ZYNQ-7000 system-on-
chip (SoC) and analyze its performance on a scheme
where the transmitter can switch among three FFT
sizes and three symbol modulation schemes without
explicit notification to the receiver. A demo video of
PolymoRF where the transmitter switches FFT size
every 0.5s is available at https://youtu.be/5vf_pb0nvKk.
We believe ours is the first demonstration of real-time
OFDM reconfigurability without explicit transmitter/
receiver coordination. Experiments on both line-of-
sight (LOS) and non-line-of-sight (NLOS) channel con-
ditions show that the system achieves at least 87% of
the throughput of a perfect knowledge—and thus,
unrealistic—Oracle OFDM system, thus proving the
feasibility of polymorphic receivers.

2. PolymoRF: AN OVERVIEW
The primary operations performed by the PolymoRF plat-
form are summarized in Figure 2. In a nutshell, PolymoRF
can be considered as a full-fledged learning-based software-
defined radio architecture where both the inference system
and the demodulation strategy can be morphed into new
configurations at will.

We provide a walk-through of the main operations per-
formed by PolymoRF with the help of Figure 2. Although for
simplicity we refer to specific hardware equipment and cir-
cuits in our explanation, we point out that the building blocks
of our platform design (BRAMs, DMA, FIFOs, etc.) can be
implemented in any commercially available FPGA platform.

We assume the transmitter may transmit by choosing
among a discrete set of physical layer parameters that are
known at the receiver’s side. We define as Y a tuple of such
physical layer parameters, which may be changed at will by
the transmitter but not before Tsw seconds between each
change, which we refer to a switching time. For the sake of
generality, in this paper we will not assume any particular
strategy in the transmitter’s parameter choice, which can be
driven by a series of factors (including anti-jamming strat-
egy, noise avoidance, throughput optimization, and so on)

art10, 12 utilizes general-purpose architectures with a
very high number of parameters, requiring hardware
resources and latency that go beyond what is accept-
able in the embedded domain. This crucial issue calls
for novel, RF-specific, real-time architectures. We are
not aware of learning systems tested in a real-time
wireless environment and used to implement infer-
ence-based wireless systems.

(3) � System-level feasibility of polymorphic platforms. It is yet
to be demonstrated whether polymorphic platforms
are feasible and effective. This is not without a rea-
son—from a system perspective, it required us to
tightly interconnect traditionally separated compo-
nents, such as CPU, RF front-end, and embedded
operating system/kernel, to form a seamlessly run-
ning low-latency learning architecture closely inter-
acting with the RF components and able to adapt at
will its hardware and software based on RF-based
inference. Furthermore, since polymorphic wireless
systems are subject to inference errors, we need to test
its performance against a perfect knowledge (thus,
ideal and not implementable) system.

1.1. Technical contributions
This paper’s key innovation is to finally bridge the gap
between the extensive theoretical research on cognitive
radios and the associated system-level challenges, by dem-
onstrating that inference-based wireless communications
are indeed feasible on off-the-shelf embedded devices.
Beyond the examples and the evaluation conducted in
Section 5, the main purpose of this work is to provide a
blueprint for next-generation wireless receivers, where
their radio hardware and software are not protocol-specific,
but instead spectrum-driven and adaptable on-the-fly to
different waveforms.

We summarize our main technical contributions as
follows:

(1) � We design a novel learning architecture called RFNet,
specifically and carefully tailored for the embedded RF
domain. Our key intuition in RFNet is to arrange I/Q
samples to form an “image” that can be effectively ana-
lyzed by the ConvNet filters. This operation produces
high-dimensional representations of small-scale transi-
tion in the I/Q complex plane, which can be leveraged to
efficiently solve a wide variety of complex RF classifica-
tion problems such as RF modulation classification.
Extensive experimental evaluation indicates that a pipe-
lined version of RFNet significantly reduces latency with
respect to a CPU implementation;

(2) � We propose a general-purpose hardware/software
architecture for software-defined radios that enables
the creation of custom polymorphic wireless systems
through RFNet. Then, we implement a multipurpose
library based on high-level synthesis (HLS) that trans-
lates an RFNet model implemented in software to a
circuit implemented in the FPGA portion of the SoC.
Moreover, we leverage key optimization strategies
such as pipelining and unrolling to further reduce the

CPU

DRAM
Buffer

RFNet
Circuit

Parameters
BRAM

DMA
Circuit

RF
Circuit

FIFO
Circuit

FPGA

System
Drivers

Custom
Drivers
(RFNet,

DMA,
Timer,
BRAMs)

Input
BRAM

Timer
Circuit

Kernel
Space

Output
BRAM

(1) (2) (3)

(4)

(6)

(7)

(8)

(5)

Baseband
DSP Logic

Figure 2. Modules and operations of PolymoRF.

SEPTEMBER 2022 | VOL. 65 | NO. 9 | COMMUNICATIONS OF THE ACM 85

that will be considered as out of the scope of this paper,
whose main focus is instead on the receiver’s side.

(1) � Reconfigurable radio front-end. The RF signal is
received (step 1) through a reconfigurable RF front-
end. In our prototype, we used an AD93611 radio
interface, which supports frequency range between 70
MHz and 6.0 GHz and channel bandwidth between
200 kHz and 56 MHz. We chose the AD9361 because
it is commonly used in software-defined radio sys-
tems—indeed, it is also used by USRPs such as the
E310 and B210. Moreover, the AD9361 provides basic
FPGA reference designs and kernel-space drivers to
ease prototyping and extensions. Perhaps more
importantly, the AD9361 local oscillator (LO) fre-
quency and RF bandwidth can be reconfigured at
will through CPU registers.

(2) � Conversion from RF to FPGA domain. The AD9361 pro-
duces streams of I/Q samples of 200M samples/second—
hence, it is clocked at 200 MHz. Since the AD9361
clock would be too fast for the other circuits in the
FPGA, we implemented a FIFO to adapt the speed of
samples from the AD9361 to the 100 MHz clock fre-
quency used by the other circuits in the FPGA (step 2).
We then use a direct memory access (DMA) core to
store the stream of I/Q samples to a buffer in the
DRAM (step 3). The use of DMA is crucial as the CPU
cannot do the transfer itself, since it would be fully
occupied for the entire duration of the read/write
operation and thus unavailable to perform other
work. Therefore, we wrote a custom DMA driver to
periodically fill a buffer of size B residing in the DRAM
with a subset of I/Q samples coming from the FIFO.

(3) � Learning and receiver polymorphism. After the buffer
has been replenished, its first X I/Q samples are sent
to a BRAM (step 4) constituting the input to RFNet, a
novel learning architecture based on ConvNets. This
circuit is the fundamental core of the PolymoRF sys-
tem; therefore, we will dedicate Sections 3 and 4 to
discuss in detail its architecture and implementa-
tion, respectively. The parameters of RFNet are read
by an additional BRAM (step 5), which in effect allows
the reconfiguration of RFNet to address multiple RF
problems according to the current platform need. As
explained in Section 3, RFNet produces a probability
distribution over the transmitter’s parameter set Y.
After RFNet has inferred the transmitter’s parame-
ters, it writes on a block-RAM (BRAM) its probability
distribution (step 6). Then, the baseband DSP logic
(which may be implemented in both hardware and
software) reads the distribution from the BRAM (step
7) selects the parameter set with highest probability
and “morphs” into a new configuration to demodu-
late the I/Q samples in B (step 8).

3. LEARNING SYSTEM: RFNet
We first motivate the use of convolutional neural networks
for RFNet, we discuss some RF-specific learning challenges,
and then we describe in details the RFNet input construction

and its complete architecture.

(1) � Why using deep learning and not machine learning?
Deep learning relieves from the burden of finding
the right “features” characterizing a given wireless
phenomenon. At the physical layer, this is a key
advantage for the following reasons. First, deep
learning offers high-dimensional feature spaces. In
particular, O’Shea et al.12 have demonstrated that on
the 24-modulation dataset considered, deep learning
models achieve on the average about 20% higher clas-
sification accuracy than legacy learning models
under noisy channel conditions. Second, automatic
feature extraction allows to reuse the same hardware
circuit to address different learning problems.
Critically, this allows to keep both latency and energy
consumption constant, which are particularly critical
in wireless systems. Third, deep learning algorithms
can be fine-tuned by performing batch gradient
descent on fresh input data, avoiding manual re-tun-
ing of the feature extraction algorithms.

(1) � Why using ConvNets for wireless deep learning? There
are several primary advantages that make the usage
of ConvNet-based models particularly desirable for
the embedded RF domain. First, convolutional filters
are designed to interact only with a very small portion
of the input. We show in Section 5.3 that this key
property allows achieving significantly higher accu-
racy than traditional neural networks. Perhaps even
more importantly, ConvNets are scalable with the
input size. For example, for a 200 × 200 input and a
DL with 10 neurons, a traditional neural network will
have 2002 ⋅ 10 = 400k weights, which implies a mem-
ory occupation of 4 ⋅ 400k = 16Mbytes to store the
weights of a single layer (i.e., a float number for each
weight). Clearly, this is unacceptable for the embed-
ded domain, as the network memory consumption
would become intractable as soon as several DLs are
stacked on top of the other.

Moreover, ConvNet filtering operations can be made
low latency by parallelization, which makes them par-
ticularly suitable to be optimized for the RF domain.
Finally, we show in Section 5 that the same ConvNet
architectures can be reused to address different RF
classification problems (e.g., modulation classifica-
tion in single- and multicarrier systems), as long as
the ConvNet is provided appropriate weights through
training. Our ConvNet hardware design (Section 4.1)
has been specifically designed to allow seamless
ConvNet reconfiguration and thus solving different
RF problems according to the system’s needs.

(2) � RF-specific learning challenges. There are a number of
key challenges in RF learning that are substantially
absent in the CV domain. Among others, we know that
RF signals are continuously subject to dynamic (and
usually unpredictable) noise/interference coming
from various sources. This may decrease the accuracy
of the learning model. For example, portions of a QPSK

research highlights

86 COMMUNICATIONS OF THE ACM | SEPTEMBER 2022 | VOL. 65 | NO. 9

transmission could be mistaken for 8PSK transmis-
sions since they share part of their constellations. We
address the above core design issues with the follow-
ing intuitions. First, although RF signals are affected
by fading/noise, in most practical cases their effect can
be considered as constant over small intervals. Second,
though some constellations are similar to each other,
the transitions between the symbols of the constellations
are distinguishable when the waveform is sampled at a
higher sampling rate than the one used by the trans-
mitter. Third, convolution operations are equivariant
to translation, so they can recognize I/Q patterns
regardless of where they occur.

(3) � RFNet input construction. By leveraging these key con-
cepts, we can design a learning system that distin-
guishes waveforms by recognizing transitions in the
I/Q complex plane regardless of where they happen, by
leveraging the shift-invariance property of convolu-
tional layers. More formally, let us consider a discrete-
time complex-valued I/Q sequence s[k], where k ≥ 0.
Let us consider M = W ⋅ H consecutive I/Q samples s[  j ],
0 ≤ j ≤ W ⋅ W, where W and H are the width and height
of the input tensor. The input tensor T, of dimension
W × H × 2, is constructed as follows:

	
� (1)

By construction, it follows that T [r + 1, c] = s[(r + 1) ⋅
W + c] = s[r⋅W+c+W], meaning that (i) I/Q samples in adja-
cent columns will be spaced in time by a factor of 1, and
(ii) I/Q samples in adjacent rows will be spaced in time by
a factor of W; moreover, (iii) our input tensors have depth
equal to 2, corresponding to the I and Q data, respectively,
which will allow the RFNet filters to examine each element
of the input tensor without decoupling the I and Q compo-
nents of the RF waveform. Figure 3 depicts an example of a
2 × 4 and 1 × 3 filters operating on a waveform.

4. PolymoRF: HW/SW ARCHITECTURE
This section presents the hardware and driver design and
implementation of our PolymoRF system. We discuss the
design, hardware implementation, and main operations of
RFNet in Section 4.1 (Figure 4).

4.1. RFNet: Architecture and operations
(1) � Design constraints. One of the core design issues to

address is ensuring that the same RFNet circuit can be
reused for multiple learning problems and not just one
architecture. For example, the wireless node might want
to classify only specific properties of an RF waveform,
for example, classify only modulation since the FFT size
is already known. This requires reconfigurability of the
model parameters, as the device’s hardware constraints
may not be able to accommodate multiple learning
architectures. In other words, we want RFNet to be able
to operate with a different set of filters and weight
parameters according to the circumstances. For this
reason, we have used high-level synthesis (HLS) to
design a library that translates a Keras-compliant RFNet
into an FPGA-compliant circuit. HLS interprets an algo-
rithmic description of a desired behavior (e.g., C/C++)
and creates a model written in hardware description
language (HDL) that can be executed by the FPGA.20

(2) � Circuit design. Figure 5 shows a block scheme of our
HLS-based RFNet circuit and its main interactions
with the CPU and other FPGA components. We also
provide an example with some numbers to ease pre-
sentation. The main feature of our RFNet implemen-
tation is its modularity-indeed, the circuits
implementing each layer are independent from each

Width = 10
Height = 1

A

B

A
B

C D

E F

C

D

E

F

Width = 8
Height = 2

RF Signal

I

Q

I

Q

Figure 3. How RFNet constructs tensors from I/Q samples.

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

4

9

14

19

Input Tensor Indices

1-2 6-7 11-12 16-17

4 9 14

Corresponding Samples

Figure 4. RFNet captures small-scale I/Q pattern sequences.

Parameters
BRAM

(Dense and
Filter Weights)

Conv
Layer

2FIFO

...

RFNet

Dense
LayerFIFO

Conv
Layer

1FIFO

Input BRAM
(W=2*H=2)*2 =
8 I/Q Samples

Output BRAM
(Class

Distribution)
0.1, 0.4, 0.50.5

DRAM
Buffer (size B=13)

User-Space
PolymoRF
Controller

PolymoRF
Receiver

FIFO 2

FIFO 3

FIFO 1

Buffer (size B=13)B ff (i B 13)

(2)

(1)

(4)

(5)

AXI Lite
Registers

(3)

Conv
Layer

2FIFO FIFO

...

RFNetRFN t

Dense
LayerFIFO FIFO

Conv
Layer

1FIFO FIFO

AXI Lite
Registers

(3)

 Figure 5. Block scheme of PolymoRF’s learning circuit.

SEPTEMBER 2022 | VOL. 65 | NO. 9 | COMMUNICATIONS OF THE ACM 87

system-on-chip (SoC), which is a circuit integrating CPU,
FPGA, and I/O all on a single substrate.9 We chose an SoC
since it provides significant flexibility in the FPGA portion
of the platform, thus allowing us to fully evaluate the trade-
offs during system design. Moreover, the Zynq-7000 fully
supports embedded Linux, which in effect makes the ZC706
a good prototype for a wireless platform. Our Zynq-7000
contains two ARM Cortex-A9 MPCore CPUs and a Kintex-7
FPGA,21 running on top of a Xilinx ZC706 evaluation board.22

For both intra-FPGA and FPGA-CPU data exchange, we
use the Advanced eXtensible Interface (AXI) bus specifica-
tion.23 In the AXI standard, the data is exchanged during
read or write transactions. In each transaction, the AXI mas-
ter is charged with initiating the transfer; the AXI slave, in
turn, is tasked with responding to the AXI master with the
result of the transaction (i.e., success/failure). An AXI mas-
ter can have multiple AXI slaves and vice versa, according to
the specific FPGA design. Multiple AXI masters/slaves can
communicate with each other by using AXI interconnects.
Specifically, AXI-Lite is used for register access and config-
ures the circuits inside the FPGA, while AXI-Stream is used
to transport high-bandwidth streaming data inside the
FPGA. AXI-Full is instead used by the CPU to read/write con-
secutive memory locations from/to the FPGA.

To study PolymoRF under realistic channel environments,
we have used the experimental setup shown in Figure 6.
These scenarios investigate a line-of-sight (LOS) configura-
tion where the transmitter is placed approximately 3 m from
the receiver, and a challenging non-line-of-sight (NLOS)
channel condition where the transmitter is placed at 7 m
from the receiver and in the presence of several obstacles
between them. Thus, the experiments were performed in
a contested wireless environment with severe interference
from nearby Wi-Fi devices as well as multipath effect.

5.2. Data collection and training process
As far as the data collection and testing process is concerned,
we first constructed a ∼10GB dataset by collecting waveform
data in the line-of-sight (LOS) configuration, and then used
this data to train RFNet through Keras. Then, we tested our
models on live-collected data in both LOS and NLOS condi-
tions. The transmitter radio used was a Zedboard equipped
with an AD9361 as RF front-end and using Gnuradio for base-
band processing. Waveforms were transmitted at center fre-
quency of 2.432 GHz (i.e., Wi-Fi’s channel 5).

To train RFNet, we use an 2 regularization parameter
l = 0.0001. We also use an Adam optimizer with a learning

other, which allows for ease of parallelization and
transition from HLS to HDL. Consecutive layers in
RFNet exchange data through high-speed AXI-Stream
interfaces that then store the results of each layer in a
FIFO, read by the next layer. Our architecture uses a
32-bit fixed point representation for real numbers,
with 10 bits dedicated to the integer portion. We
chose fixed point instead of floating point to decrease
drastically computation and hardware architecture
complexity, as we do not need the precision of float-
ing point arithmetic. Another key advantage of our
implementation is that it clearly separates the com-
putation from the parameters, which allows for seam-
less real-time reconfigurability. This is achieved by
writing the parameters in a BRAM accessible by the
CPU and by the RFNet circuit.

(3)  Main operations. The first operation is to write the
RFNet’s parameters into a BRAM through the user-
space PolymoRF controller (step 1). These parameters
are the weights of the convolutional layer filters and
the weights of the dense layers. Since we use fixed
point architecture, each parameter is converted into
fixed point representation before being written to the
BRAM. As soon as a new input buffer B (of size 13 in
our example) has been replenished, the controller
writes the RFNet input (the first 8 I/Q samples in our
example) into the input BRAM (step 2). RFNet opera-
tions are then started by writing into an AXI-Lite regis-
ter (step 3) through a customized kernel-level Linux
driver. Once the results have been written in the out-
put BRAM (step 4), RFNet writes an acknowledgement
bit into another AXI-Lite register, which signals the
controller that the output is ready. Then, the control-
ler reads the output (in our example, class 3 has the
highest probability) and sends the entire buffer B
through a Linux FIFO to the PolymoRF receiver (step
5), which is currently implemented in Gnuradio soft-
ware. The receiver has different FIFOs, each for a
parameter set. Whenever a FIFO gets replenished, the
part of the flow graph corresponding to that parame-
ter set activates and demodulates the I/Q samples
contained in the buffer B. Notice that for efficiency rea-
sons the receiver chains do not run when the FIFO is
empty, therefore only one receiver chain can be active
at time.

5. EXPERIMENTAL RESULTS
We first discuss details on our PolymoRF prototype in Section
5.1, and then discuss the data collection and training pro-
cess in Section 5.2. We then investigate the performance
of RFNet in Section 5.3 on a single-carrier system. Then, we
implement and test the throughput performance on a multi-
carrier polymorphic OFDM system in Section 5.4. Finally, we
report the latency and hardware performance of PolymoRF
in Section 5.5.

5.1. Protoype and experimental setup
Our prototype is entirely based on off-the-shelf equipment.
Specifically, we use a Xilinx Zynq-7000 XC7Z045–2FFG900C

RX
TX1 (LOS)
TX2 (NLOS)

Scale
1cm ~ 1m

RX

TX1

Figure 6. (left) Placement of the radios for experimental evaluation;
(right) experimental setting.

research highlights

88 COMMUNICATIONS OF THE ACM | SEPTEMBER 2022 | VOL. 65 | NO. 9

simpler architecture. This is due to the fundamental
difference between how the convolutional layers in
PolymoRF and Linear process I/Q samples.

(2) � Hyper-parameter evaluation. We study the impact of
the number of convolutional layers M and dense lay-
ers K, as well as the input size (W) and filter size (F) on
the performance of RFNet. Figure 8 shows accuracy
as a function of W and H, for hyper-parameters M = 1,
2 and C = 10, 25, 50. The results conclude that
increasing C does improve the performance but up
to a certain extent. Indeed, we notice that switching
to C = 50 does not improve much the performance,
especially when M = 2. This is because the number of
distinguishing I/Q patterns is limited in number
among different modulations, and thus, the filters in
excess end up learning similar patterns.
Furthermore, increasing W and H increases accuracy
significantly, since a larger input size allows com-
pensating for the adverse channels/noise condi-
tions. Furthermore, Figure 9 illustrates the impact of
K. Figure 9 suggests that the accuracy does not
increase when adding a dense layer, regardless of its
size, which indicates the correctness of our choice to
exclude dense layers.

(3) � Impact of the sampling rate. We investigate the impact
of the transmitter’s sampling rate in Figure 10,
where we show the classification accuracy for differ-

rate of l = 10–4 and categorical cross-entropy as a loss func-
tion. All architectures are implemented in Python, on top of
the Keras framework and with Tensorflow as the backend
engine.

5.3. Single-carrier evaluation
We consider the challenging problem of joint modulation
and channel recognition in a single-carrier system where (i)
modulation is chosen among BPSK, QPSK, 8PSK, 16-QAM,
32-QAM, and 64-QAM; (ii) spectrum is shifted of 0, 1 KHz,
and 2 KHz from its center frequency. Due to space limita-
tions, we only report results on the LOS scenario for the
single-carrier scenario and report in Section 5.4 the perfor-
mance of RFNet on the NLOS scenario with the multicarrier
OFDM system.

(1) � Comparison with existing architectures. We compare
RFNet to,10, 12 which is to the best of our knowledge10,

12 the current state of the art in RF waveform classifi-
cation using ConvNets. This approach, called for
simplicity Linear, considers an input tensor of
dimension 1 × W ⋅ H × 2 and convolutional layers with
filters of dimension 1 × F × 2. Thus, the filters in the
first convolutional layer perform linear convolution
over a set of F consecutive I/Q samples. We attempted
to train the architecture in12, which has M = 7 convo-
lutional layers with C = 64 filters each and K = 2 dense
layers with 128 neurons each. However, due to its
huge dimensions, we were not able to synthesize this
architecture on our test bed. Therefore, we com-
pared RFNet with the architecture in,10 that is, M = 2
convolutional layers with C = 25,680 and K = 1 with
256 neurons. For fair comparison with Linear, we
selected the closest input size to ours (i.e., 1 × 128 vs.
10 × 10, 1 × 400 vs. 20 × 20, 1 × 900 vs. 30 × 30).

Figure 7 shows the test-set accuracy obtained for a
subset of the considered architectures, where RFNet
was trained with M = 1 convolutional layer with C =
25 filters, and no dense layer (K = 0). The obtained
results indicate that traditional dense networks can-
not recognize complex RF waveforms, as they attain
slightly more accuracy (8%) than the random-guess
accuracy (5.5%)—regardless of the number of layers.
This is because dense layers are not able to capture
localized, small-scale I/Q variations in the input
data, which is instead done by convolutional layers.
Moreover, Figure 7 indicates that RFNet has similar
accuracy as obtained by Linear, despite using a much

0

0.5

0.8

W=10, H=10 W=20, H=20 W=30, H=30

Dense K=1
Dense K=2

RFNet
Linear

Figure 7. Comparison among RFNet, Dense, and Linear.10

0

0.5

0.8

1

W=10, H=10 W=20, H=20 W=30, H=30

Conv 10
Conv 25

Conv 50
Conv 10/10

Conv 25/25
Conv 50/50

M = 1 (25)
W,H = 10x10

 M = 2 (25/25)
W,H = 10x10

M = 2 (25/25)
W,H= 20x20

Figure 8. (top) Test set classification accuracy vs. input size W/H
vs. M, with K = 0 (no dense layer); (bottom) confusion matrices as
function of M, W, and H.

0

0.5

0.8
1

10/10 20/20 30/30

Test-set Classification Accuracy vs. Number of Conv Filters

No Dense
Dense 18

Dense 36
Dense 54

Figure 9. Accuracy vs. number of filters vs. dense layer size.

SEPTEMBER 2022 | VOL. 65 | NO. 9 | COMMUNICATIONS OF THE ACM 89

following, we use the C = 25,25, 20 × 20, pipelined RFNet
architecture, which presents latency of about 17 ms (see
Section 5.5). In these experiments, we set (i) the transmit-
ter’s sampling rate to 5M samples/sec; PolymoRF’s buffer
size B to 250k I/Q samples; (iii) the switching time of the
transmitter to 250 ms. Thus, RFNet is run approximately
five times during each switching time.

The most critical aspect to be evaluated is how Poly-
OFDM, an inference-based system, compares with an ideal
system that has perfect knowledge of the modulation and
FFT size being used by the transmitter at each time, which
we call for simplicity Oracle. Although Oracle cannot be
implemented in practice, we believe this experiment is
crucial to understand what is the throughput loss with
respect to a system where the physical layer configuration
is known a priori. In Figure 12, we show the comparison
between Oracle and Poly-OFDM as a function of the FFT
size and the symbol modulation. As we notice, the overall
throughput results decrease in the NLOS scenario, which is
expected given the impairments imposed by the challeng-
ing channel conditions. On the other hand, the results in
Figure 12 confirm that Poly-OFDM is able to obtain similar
throughput performance with that of a traditional OFDM
system, obtaining on the average 90% and 87% throughput
of that of the traditional system.

5.5. RFNet latency evaluation and comparison
Table 1 compares latency, the number of parameters, and
BRAM occupation of RFNet vs. a C++ implementation run-
ning in the CPU of our test bed. As we can see, RFNet con-
sumes at most 34% of the available BRAM of the platform.
Moreover, Table 2 shows the comparison between the pipe-
lined version of the ConvNet circuits and the CPU latency,
as well as the look-up table (LUT) consumption increase
with respect to the unpipelined version. Table 2 concludes
that on the average, our parallelization strategies bring
close to 60% and 100% latency reduction with respect to the
unoptimized and CPU versions, respectively, with a LUT
utilization increase of about 7% on the average.

ent W, H, and C values. We also show the confusion
matricesa for the W, H = 10, C = 50 architectures in
Figure 11. As expected, these results confirm that the
performance of RFNet decreases as the transmitter’s
sampling rate increases. This is because, as shown in
Section 3 RFNet learns the I/Q transitions between
the different modulations. Therefore, as the trans-
mitter’s sampling rate increases, the model will have
fewer I/Q samples between the constellation points.
Indeed, the confusion matrices show that with 5 MS/s
the model becomes further confused with QAM con-
stellations, and with 10 MS/s higher-order PSKs and
QAMs “collapse” onto the lowest-order modulations.

(4) � Remarks. The above results imply that oversampling
the signal leads to better modulation classification
accuracy. However, we would like to point out that
oversampling does not mean that the physical layer
has to process more data—indeed, the extra samples
can be dropped when going through the demodula-
tion chain, while the oversampled I/Q signal can be
forwarded to RFNet for classification.

5.4. Multicarrier evaluation
We evaluated PolymoRF on an OFDM system (in short,
Poly-OFDM) which supports three different FFT sizes
(64, 128, and 256) and three different symbol modula-
tions in the FFT bins (BPSK, QPSK, and 8PSK), creating
in total a combination of nine different parameter sets
that are switched pseudo-randomly by the transmitter. A
demo video where the transmitter switches FFT size every
0.5s is available at https://youtu.be/5vf_pb0nvKk. In the

a	 Class labels are ordered by modulation and frequency shift, that is, from
“BPSK, 0 KHz”, “BPSK, 1 KHz”, … to “64-QAM, 2 KHz”.

0

0.5

0.8

1

2 MS/s 5 MS/s 10 MS/s

W,H=10, C=25
W,H=10, C=50

W,H=20, C=25
W,H=20, C=50

W,H=30, C=25
W,H=30, C=50

Figure 10. Accuracy vs. transmitter’s sampling rate.

5 MS/s 10 MS/s

QAMs

PSKs

BPSK 16-QAM

Figure 11. Confusion matrices for transmitter’s sampling rate of 5
MS/s and 10 MS/s, W, H = 10, C = 50 model.

 0
 50

 100
 150
 200
 250

FFT = 64 FFT = 128 FFT = 256

T
hr

ou
gh

pu
t

(K
B

/s
)

BPSK, Oracle
BPSK, Poly-OFDM

QPSK, Oracle

QPSK, Poly-OFDM
8PSK, Oracle

8PSK, Poly-OFDM

0
10
20
30
40
50

FFT = 64 FFT = 128 FFT = 256

T
hr

ou
gh

pu
t

(K
B

/s
)

BPSK, Oracle
BPSK, Poly-OFDM

QPSK, Oracle

QPSK, Poly-OFDM
8PSK, Oracle

8PSK, Poly-OFDM

Figure 12. Comparison between Oracle and Poly-OFDM, (top) LOS
and (bottom) NLOS scenarios.

research highlights

90 COMMUNICATIONS OF THE ACM | SEPTEMBER 2022 | VOL. 65 | NO. 9

6. RELATED WORK
Learning-based radios are envisioned to be able to auto-
matically infer the current spectrum status in terms of occu-
pancy,17 interference,2 and malicious activities.5 Most of the
existing work is based on low-dimensional machine learn-
ing,4, 16, 24 which requires the cumbersome manual extrac-
tion of very complex, ad hoc features from the waveforms.
For this reason, deep learning has been proposed as a via-
ble alternative to traditional learning techniques.7 The key
problem of RF modulation recognition through deep learn-
ing has been extensively investigated.6, 11, 12, 18, 19 The seminal
work by O’Shea et al.12 proposed ConvNets-based to address
the issue. However, the authors do not address the issue
of what to do with the inferred RF information. Moreover,
the aforesaid work proposes models leveraging a significant
number of parameters, thus ultimately not applicable to
real-time RF settings. Recently, Restuccia and Melodia13
have demonstrated the need for real-time hardware-
based RF deep learning. However, the main limitation of
this study13 is that it focused on the learning aspect only,
ultimately not addressing the problem of connecting real-
time inference with receiver reconfigurability.

7. CONCLUSION
This paper has proposed PolymoRF, a prototype that can
be reused to develop and test novel polymorphic wireless
communication systems. One of the key insights brought
by our experimental evaluation is that the RF channel may
impact the performance of RFNet to a significant extent.
To this end, we can (i) train different learning models for
different channels and reconfigure the weights of RFNet
in the FPGA accordingly; and (ii) apply small, controlled
modifications to the RF signal at the transmitter’s side
to compensate for the current RF channel condition.
Another core aspect is the impact of polymorphism on the
effectiveness of smart jamming attacks. We are conscious
that the aforesaid issues are definitely worth investigat-
ing; however, they deserve separate papers and are the
subject of our ongoing work.

Acknowledgments
This work is supported in part by the Office of Naval
Research (ONR) under contracts N00014-18-9-0001. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements of the ONR or
the U.S. government.�

To give the reader a perspective of the amount of resources
consumed on the FPGA, Figure 13 shows the FPGA imple-
mentation of respectively 10 × 10 and 20 × 20 RFNet model,
both pipelined and with C = 25,25 architecture, where we
highlight and color the resource consumption of RFNet
with respect to the AD9361 circuitry. Figure 13 indicates
that the resource consumption of the RFNet circuit is sig-
nificantly lesser than the AD9361 one in the 10 × 10 case and
becomes comparable with the 20 × 20 architecture. In any
case, the overall resource consumption of our FPGA designs
is approximately 50% of the total FPGA resources.

Model Input
Latency

(ms) Params (k) BRAM (%)

RFNet C = 25 10 × 10
20 × 20
30 × 30

2.918
26.55
93.35

∼11
∼45
∼81

1
7

15

RFNet C = 50 10 × 10
20 × 20
30 × 30

5.835
53.11

233.3

∼23
∼90
∼203

3
14
29

RFNet C = 25,25 10 × 10
20 × 20
30 × 30

6.704
38.41

144.9

∼10
∼17
∼34

2
8

17

RFNet C = 50,50 10 × 10
20 × 20
30 × 30

21.41
100.3
336.9

∼31
∼40
∼81

4
16
34

Table 1. Latency/hardware consumption evaluation.

Model Input CPU (ms)
Pipelined

(ms) LUT (%)

RFNet C = 25 10 × 10
20 × 20
30 × 30

49.31
478.4

1592

1.19
8.077

25.54

+3
+7
+9

RFNet C = 50 10 × 10
20 × 20
30 × 30

106.4
934.2

3844

2.381
16.15
63.81

+6
+12
+20

RFNet C = 25,25 10 × 10
20 × 20
30 × 30

122.1
677.9

2354

3.959
16.29
49.57

+1
+4
+7

RFNet C = 50,50 10 × 10
20 × 20
30 × 30

363.9
1826
5728

13.51
48.87

131.7

+2
+7
+11

Table 2. Pipelined vs. CPU latency.

RFNet

AD9361
Core

20x20 10x10

RFNet

AD9361
Core

Figure 13. PolymoRF FPGA implementations.

References
	 1.	 Analog Devices Incorporated. AD9361

RF agile transceiver data sheet, 2018.
http://www.analog.com/media/en/
technical-documentation/data-sheets/
AD9361.pdf.

	 2.	 Chen, Y., Oh, H.-S. A survey of
measurement-based spectrum
occupancy modeling for cognitive
radios. IEEE Commun. Surv. Tutor 18,
1 (2016), 848–859.

	 3.	 Cisco Systems. Cisco visual
networking index: Global mobile data
traffic forecast update, 2016–2021
white paper, 2017. http://tinyurl.com/
zzo6766.

	 4.	 Ghodeswar, S., Poonacha, P.G. An
SNR estimation based adaptive
hierarchical modulation classification
method to recognize M-ary QAM and
M-ary PSK signals. In Proceedings of
International Conference on Signal
Processing, Communication and
Networking (ICSCN) (2015).

	 5.	 Jin, X., Sun, J., Zhang, R., Zhang, Y.,
Zhang, C. SpecGuard: Spectrum
misuse detection in dynamic spectrum
access systems. IEEE Trans.
Mob. Comput 17, 12 (Dec 2018),
2925–2938.

	 6.	 Kulin, M., Kazaz, T., Moerman, I.,
Poorter, E.D. End-to-end learning

SEPTEMBER 2022 | VOL. 65 | NO. 9 | COMMUNICATIONS OF THE ACM 91

from spectrum data: A deep learning
approach for wireless signal
identification in spectrum monitoring
applications. IEEE Access 6, 2018,
18484–18501.

	 7.	 Mao, Q., Hu, F., Hao, Q., Deep learning
for intelligent wireless networks:
A comprehensive survey. IEEE
Commun. Surv. Tutor 20, 4 (2018),
2595–2621.

	 8.	 Mitola, J., Maguire, G.Q. Cognitive
radio: Making software radios more
personal. IEEE Pers. Commun 6, 4
(1999), 13–18.

	 9.	 Molanes, R.F., Rodríguez-Andina, J.J.,
Fariña, J. Performance characterization
and design guidelines for efficient
processor - FPGA communication in
cyclone V FPSoCs. IEEE Trans. Ind.
Electron. 65, 5 (2018), 4368–4377.

	10.	 O’Shea, T.J., Corgan, J., Clancy, T.C.
Convolutional radio modulation
recognition networks. In International
Conference on Engineering
Applications of Neural Networks
(2016), Springer, 213–226.

	11.	 O’Shea, T.J., Hoydis, J. An introduction
to deep learning for the physical layer.
IEEE Trans. Cogn. Commun. Netw 3, 4
(2017), 563–575.

	12.	 O’Shea, T.J., Roy, T., Clancy, T.C.
Over-the-air deep learning based radio
signal classification. IEEE J. Sel. Top.
Signal Process 12, 1 (2018), 168–179.

	13.	 Restuccia, F., Melodia, T. Big data
goes small: Real-time spectrum-
driven embedded wireless networking
through deep learning in the RF loop.
In Proceedings of IEEE Conference
on Computer Communications
(INFOCOM), (2019).

	14.	 Restuccia, F., Melodia, T. DeepWiERL:

Bringing deep reinforcement
learning to the internet of self-
adaptive things. Proceedings of
IEEE Conference on Computer
Communications (INFOCOM), 2020.

	15.	 Restuccia, F., Melodia, T. Physical-
layer deep learning: Challenges
and applications to 5G and beyond.
arXiv:2004.10113 (2020).

	16.	 Shi, Q., Karasawa, Y. Automatic
modulation identification based on the
probability density function of signal
phase/ IEEE Trans. Commun 60, 4
(April 2012), 1033–1044.

	17.	 Subramaniam, S., Reyes, H.,
Kaabouch, N. Spectrum occupancy
measurement: An autocorrelation
based scanning technique using
USR. In Proceedings of IEEE Annual
Wireless and Microwave Technology
Conference (WAMICON) (2015).

	18.	 Wang, T., Wen, C.-K., Wang, H., Gao, F.,
Jiang, T., Jin, S. Deep learning for
wireless physical layer: Opportunities
and challenges. China Commun 14,
11 (2017), 92–111.

	19.	 West, N.E., O’Shea, T.J. Deep
architectures for modulation
recognition. In Proceedings of
IEEE International Symposium on
Dynamic Spectrum Access Networks
(DySPAN) (2017).

	20.	 Winterstein, F., Bayliss, S.,
Constantinides, G.A. High-level
synthesis of dynamic data structures:
A case study using Vivado HLS.
In Proceedings of International
Conference on Field-Programmable
Technology (FPT) (2013).

	21.	 Xilinx Inc. Zynq-7000 SoC data sheet:
Overview, 2018. https://www.xilinx.
com/support/documentation/

data_sheets/ds190-Zynq-7000-
Overview.pdf.

	22.	 Xilinx Inc. ZC706 evaluation board
for the Zynq-7000 XC7Z045 all
programmable SoC user guide, 2018.
https://www.xilinx.com/support/
documentation/boards_and_kits/
zc706/ug954-zc706-eval-board-
xc7z045-ap-soc.pdf.

	23.	 Xilinx Inc.. AXI reference guide,
UG761 (v13.1) March 7, 2011 (2011).
https://www.xilinx.com/support/
documentation/ip_documentation/
ug761_axi_reference_guide.pdf0.0.0.0.

	24.	 Xiong, W., Bogdanov, P., Zheleva, M.
Robust and efficient modulation
recognition based on local sequential
IQ features. In Proceedings of
IEEE Conference on Computer
Communications (INFOCOM) (2019).

	25.	 Yu, Y., Wang, T., Liew, S.C. Deep-
reinforcement learning multiple
access for heterogeneous wireless
networks. IEEE J. Sel. Areas
Commun. 37, 6 (2019), 1277–1290.

Francesco Restuccia and Tommaso
Melodia({frestuc, melodia}@northeastern.
edu), Institute for the Wireless Internet of
Things, Northeastern University, Boston,
MA, USA

© 2022 ACM 0001-0782/22/9 $15.00

Without a clear understanding of the
human side of virtual reality,

the experience will always fail.
“Dr. Jerald has recognized a great need in our
community and filled it. The VR Book is a scholarly
and comprehensive treatment of the user interface
dynamics surrounding the development and
application of virtual reality. I have made it a required
reading for my students and research colleagues. Well
done!”
- Professor Tom Furness, University of Washington
VR Pioneer and Founder of HIT Lab International
and the Virtual World Society

