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Wireless systems such as the Internet of 
Things (IoT) are changing the way we 
interact with the cyber and the physical 
world. As IoT systems become more 
and more pervasive, it is imperative 
to design wireless protocols that can 
effectively and efficiently support IoT 
devices and operations. On the other 
hand, today’s IoT wireless systems are 
based on inflexible designs, which 
makes them inefficient and prone to 
a variety of wireless attacks. In this 
paper, we introduce the new notion of a 
deep learning-based polymorphic IoT 
receiver, able to reconfigure its waveform 
demodulation strategy itself in real 
time, based on the inferred waveform 
parameters. Our key innovation is 
the introduction of a novel embedded 
deep learning architecture that enables 
the solution of waveform inference 
problems, which is then integrated 
into a generalized hardware/software 
architecture with radio components and 
signal processing. Our polymorphic 
wireless receiver is prototyped on a 
custom-made software-defined radio 
platform. We show through extensive 
over-the-air experiments that the system 
achieves throughput within 87% of a 
perfect-knowledge Oracle system, thus 
demonstrating for the first time that 
polymorphic receivers are feasible.
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It has been forecast that more than 50 
billion mobile devices will be soon 
connected to the Internet of Things 
(IoT) [1]. A clear side effect of this 
unprecedented growth is the potentially 

disruptive levels of interference that 
IoT devices will impose on each other 
[2]. Although Mitola and Maguire first 
envisioned the concept of “cognitive 
radios” 20 years ago [3], today’s commercial 
wireless devices still use inflexible wireless 
standards such as Wi-Fi and Bluetooth 
– and thus, are still very far from being 
truly real-time reconfigurable. From a 
security perspective, another key issue is 
perhaps even more worrisome. It has been 
extensively demonstrated that jamming 
strategies targeting the inflexibility of key 
components of the wireless transmission, 
such as headers and pilots, can significantly 
decrease the system throughput while 
increasing the jammer stealthiness. For 
example, Clancy [4] demonstrated that pilot 
nulling attacks in OFDM systems can be 
up to 7.5dB more effective than traditional 
jamming. Moreover, Vo et al. [5] show that 
short bursts across carefully selected Wi-Fi 
sub-carriers can destroy more than 95% of 
Wi-Fi transmissions with an energy cost 
three orders of magnitude less than the 
communicating nodes. 

Intuitively, the issues of existing com-
munication systems could be addressed by 
allowing transmitters to dynamically switch 
parameters such as carrier frequency, FFT 
size, and symbol modulation without coor-
dination with the receiver – in other words, 
polymorphically adapt to the transmitter’s 
behavior. This will allow the transmitter  
(i) efficient spectrum occupation by using 
the most appropriate wireless scheme at any 

given moment, and (ii) change position of 
header and pilots over time, thus becoming  
less jamming-prone. Figure 1 shows an 
example of a polymorphic receiver able to 
infer the current transmitter’s physical-
layer scheme (e.g., OFDM vs narrowband) 
and the scheme’s parameters (e.g., FFT size, 
channel, modulation), and then demodulate 
each portion of the signal.

Novelty and Contribution. This paper’s 
key innovation is to finally bridge the gap 
between the extensive theoretical research on 
cognitive radios and the associated system-
level challenges, by demonstrating that 
inference-based wireless communications 
are indeed feasible on off-the-shelf embedded 
devices. The main purpose of this work is 
to provide a blueprint for next-generation 
wireless receivers, where their radio 
hardware and software are not protocol-
specific, but instead spectrum-driven and 
adaptable on-the-fly to different waveforms. 
Specifically, in this paper, we design a 
novel learning architecture called RFNet, 
specifically and carefully tailored for the 
embedded RF domain. Our key intuition 
in RFNet is to arrange I/Q samples to 
form an “image” that can be effectively 
analyzed by the convolutional layers. This 
operation produces high-dimensional 
representations of small-scale transition in 
the I/Q complex plane. We integrate RFNet 
into a generalized hardware/software 
architecture with radio components and 
signal processing. We prototype our system 
on a ZYNQ-7000 system-on-chip (SoC) 
and analyze its performance on a scheme 
where the transmitter can switch among 

3 FFT sizes and 3 symbol modulation 
schemes without explicit notification to 
the receiver. A demo video where the 
transmitter switches FFT size every 0.5s is 
available at https://youtu.be/5vf_pb0nvKk. 
We believe ours is the first demonstration of 
real-time OFDM reconfigurability without 
explicit transmitter/receiver coordination. 
Experiments show that the system achieves 
at least 87% of the throughput of a perfect-
knowledge – and thus, unrealistic – Oracle 
OFDM system, thus proving the feasibility 
of polymorphic receivers.
 
BACKGROUND AND CHALLENGES 
Learning-based radios are envisioned to 
be able to automatically infer the current 
spectrum status in terms of occupancy [6], 
interference [7] and malicious activities [8]. 
Most of the existing work is based on low-
dimensional machine learning [9], which 
requires the cumbersome manual extraction 
of very complex, ad hoc features from the 
waveforms. For this reason, deep learning 
has been proposed as a viable alternative 
to traditional learning techniques [10]. The 
key problem of RF modulation recognition 
through deep learning has been extensively 
investigated [11–13]. The seminal work 
by O’Shea et al. [11] and Karra et al. [14] 
proposed ConvNets-based to address the 
issue. However, the authors do not address 
the issue of what to do with the inferred RF 
information. Conversely, Kulin et al. present 
in [13] a framework for end-to-end wireless 
deep learning, where a use case on dynamic 
spectrum access is provided. The above work 
proposes models leveraging a significant 
number of parameters, thus ultimately not 

FIGURE 1. Example of a self-adaptive polymorphic receiver. 
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applicable to real-time RF settings. Recently, 
[15] has demonstrated the need for real-
time hardware-based RF deep learning. 
However, the main limitation of [15] is 
that it focuses on the learning aspect only, 
ultimately not addressing the problem of 
connecting real-time inference with receiver 
reconfigurability. 

Doing away with explicit coordination 
and inflexible physical layers is the first 
step toward wireless receivers able to self-
adapt to demodulate many waveforms with 
a single radio interface [16, 17]. Yet, despite 
their compelling necessity, these wireless 
receivers do not exist today. Achieving 
this goal required us to address a set of key 
research challenges summarized below. 

(1) Keeping Up with the Transmitter.  
A crucial aspect is the real-time parameter 
inference. In practical systems, however, 
transmitters may choose to switch its 
parameter configuration in the order of 
milliseconds (e.g., frequency hopping, 
rate adaptation). For example, if the 
transmitter chooses to switch modulation 
every 100ms, the learning model should 
run in (much) less than 100ms to predict 
the parameters and morph the receiver 
into a new configuration. It was shown in 
[15] that CPU latency is several orders of 
magnitude greater than what is required 
to sustain realistic sampling rates from 
the RF interface. Thus, we need hardware-
based designs to implement low-latency 
knowledge extraction techniques. 

(2) Creating Learning Architectures 
for the Embedded RF Domain. Recent 
advances in RF deep learning [11–14, 18, 
19] have demonstrated that convolutional 
neural networks (ConvNets) may be 
applied to analyze RF data without feature 
extraction and selection algorithms [20–
23]. Moreover, ConvNets present a number 
of characteristics (discussed in Section 4) 
that make them particularly desirable from 
a hardware implementation perspective. 
However, these solutions cannot be applied 
to implement real-time poly-morphic 
wireless communications – existing art [11, 
18] utilizes general-purpose architectures 
with a very high number of parameters, 
requiring hardware resources and latency 
that go beyond what is acceptable in the 
embedded domain. This crucial issue 

calls for novel, RF-specific, real-time 
architectures. We are not aware of learning 
systems tested in a real-time wireless 
environment and used to implement 
inference-based wireless systems. 

(3) System-level Feasibility of Polymorphic 
Platforms. It is yet to be demonstrated 
whether polymorphic platforms are feasible 
and effective. This is not without a reason – 
from a system perspective, it required us to 
tightly interconnect traditionally separated 
components, such as CPU, RF front-end, 
and embedded operating system/kernel, 
to form a seamlessly running low-latency 
learning architecture closely interacting 
with the RF components and able to adapt 
at will its hardware and software based on 
RF-based inference. Furthermore, since 
polymorphic wireless systems are subject 
to inference errors, we need to test its 
performance against a perfect-knowledge 
(thus, ideal and not implementable) system.

SYSTEM OVERVIEW 
The primary operations performed by our 
polymorphic IoT receiver platform are 
summarized in Figure 2. In a nutshell, the 
system can be considered as a full-fledged 
learning-based software-defined radio 
architecture where both the inference 
system and the demodulation strategy can 
be morphed into new configurations at will.

We provide a walk-through of the 
main operations with the help of Figure 2. 
Although for simplicity we refer to specific 
hardware equipment and circuits in our 

explanation, we point out that the building 
blocks of our platform design (BRAMs, 
DMA, FIFOs, etc.) can be implemented in 
any commercially available FPGA platform. 
We assume the transmitter may transmit by 
choosing among a discrete set of physical-
layer parameters, which are known at the 
receiver’s side. Physical-layer parameters 
may be changed at will by the transmitter 
but not before a minimum switching time. 
For the sake of generality, in this paper we 
will not assume any particular strategy 
in the transmitter’s parameter choice, 
which can be driven by a series of factors 
(including anti-jamming strategy, noise 
avoidance, throughput optimization, and 
so on) that will be considered as out of the 
scope of this paper, whose main focus is 
instead on the receiver’s side. 

(1) Reconfigurable Radio Front-end. 
The RF signal is received (step 1) through 
a reconfigurable RF front-end. In our 
prototype, we used an AD9361 [24] radio 
interface, which supports frequency range 
between 70 MHz to 6.0 GHz and channel 
bandwidth between 200 kHz to 56 MHz. 
We chose the AD9361 because it is com- 
monly used in software-defined radio 
systems – indeed, it is also used by USRPs 
such as the E310 and B210. Moreover, the 
AD9361 provides basic FPGA reference 
designs and kernel-space drivers to ease 
prototyping and extensions. Perhaps more 
importantly, the AD9361 local oscillator 
(LO) frequency and RF bandwidth can be 
reconfigured at will through CPU registers.

FIGURE 2. Modules and operations.
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(2) Conversion from RF to FPGA domain.  
The AD9361 produces streams of I/Q 
samples of 200M samples/second – hence, 
it is clocked at 200 MHz. Since the AD9361 
clock would be too fast for the other circuits 
in the FPGA, we implemented a FIFO to 
adapt the speed of samples from the AD9361 
to the 100 MHz clock frequency used by the 
other circuits in the FPGA (step 2). We then 
use a direct memory access (DMA) core to 
store the stream of I/Q samples to a buffer 
in the DRAM (step 3). The use of DMA is 
crucial as the CPU cannot do the transfer 
itself, since it would be fully occupied 
for the entire duration of the read/write 
operation, and thus unavailable to perform 
other work. Therefore, we wrote a custom 
DMA driver to periodically fill a buffer of 
size B residing in the DRAM with a subset 
of I/Q samples coming from the FIFO. 

(3) Learning and Receiver Polymorphism. 
After the buffer has been replenished, the  
first I/Q samples are sent to a BRAM (step 4)  
constituting the input to RFNet, a novel 
learning architecture based on ConvNets. 
The parameters of RFNet are read by an 
additional BRAM (step 5), which in effect 
allows the reconfiguration of RFNet to 
address multiple RF problems according 
to the current platform need. As explained 
in Section 4, RFNet produces a probability 
distribution over the transmitter’s para- 
meter set. After RFNet has inferred the 
transmitter’s parameters, it writes on a block-

RAM (BRAM) its probability distribution 
(step 6). Then, the baseband DSP logic (which 
may be implemented in both hardware and 
software) reads the distribution from the 
BRAM (step 7), selects the parameter set with 
highest probability, and “morphs” into a 
new configuration to demodulate the I/Q 
samples in the buffer (step 8).

DEEP WAVEFORM LEARNING 
Deep learning relieves the burden of finding 
the right “features” characterizing a given 
wireless phenomenon. At the physical layer, 
this is a key advantage for the following 
reasons. First, deep learning offers high-
dimensional feature spaces. In particular, 
O’Shea et al. [11] have demonstrated that 
on the 24-modulation dataset considered, 
deep learning models achieve on the average 
about 20% higher classification accuracy 
than legacy learning models under noisy 
channel conditions. Second, automatic 
feature extraction allows the reuse of the 
same hardware circuit to address different 
learning problems. Critically, this allows 
both latency and energy consumption 
to stay constant, which are particularly 
critical in wireless systems. Third, deep 
learning algorithms can be fine-tuned by 
performing batch gradient descent on fresh 
input data, avoiding manual retuning of 
the feature extraction algorithms. There are 
several primary advantages that make the 
usage of ConvNet–based models particularly 
desirable for the embedded RF domain. First, 

convolutional filters are designed to interact 
only with a very small portion of the input. 
This key property allows the achievement of 
significantly higher accuracy than traditional 
neural networks [15]. Perhaps even more 
importantly, ConvNets are scalable with the 
input size. For example, for a 200x200 input 
and a DL with 10 neurons, a traditional 
neural network will have 2002 · 10 = 400k  
weights, which implies a memory occu- 
pation of 4 · 400k = 16 Mbytes to store 
the weights of a single layer (i.e., a float 
number for each weight). Clearly, this is 
unacceptable for the embedded domain, as 
the network memory consumption would 
become intractable as soon as several DLs 
are stacked on top of the other.

There are a number of key challenges  
in RF learning that are substantially absent 
in the CV domain. Among others, we know 
that RF signals are continuously subject 
to dynamic (and usually unpredictable) 
noise/interference coming from various 
sources. This may decrease the accuracy 
of the learning model. For example, 
portions of a QPSK transmission could 
be mistaken for 8PSK transmissions since 
they share part of their constellations. We 
address the above core design issues with 
the following intuitions. First, although 
RF signals are affected by fading/noise, 
in most practical cases their effect can be 
considered as constant over small intervals. 
Second, though some constellations are 
similar to each other, the transitions 
between the symbols of the constellations 
are distinguishable when the waveform 
is sampled at a higher sampling rate than 
the one used by the transmitter. Third, 
convolution operations are equivariant 
to translation, so they can recognize I/Q 
patterns regardless of where they occur. 
By leveraging these key concepts, we can 
design a learning system that distinguishes 
waveforms by recognizing transitions in 
the I/Q complex plane regardless of where 
they happen, by leveraging the shift-
invariance property of convolutional layers 
and feeding discrete-time complex-valued 
I/Q sequence to the ConvNet. Figure 3 
depicts an example of a 2x4 and 1x3 filters 
operating on a waveform, while Figure 4 
shows the complete architecture of RFNet. 
Similar to existing work [11] and computer 
vision-based models, the network is 
composed by M convolutional (Conv) layers 

FIGURE 3. How RFNet constructs 
tensors from I/Q samples.

Width = 10
Height = 1

A

B

A
B

C D

E F

C

D

E

F

Width = 8
Height = 2

RF Signal

I

Q

I

Q



GetMobile    September 2021 | Volume 25, Issue 332

with C filters each, followed by rectified 
linear units (ReLU) as activation functions. 
These are then followed by a series of dense 
layers, each having D neurons. The final 
layer is a softmax output, which gives the 
probability distribution over the set of all 
possible classes. 

PROTOTYPE AND EVALUATION
Our prototype is entirely based on off-
the-shelf equipment. Specifically, we use 
a Xilinx Zynq-7000 XC7Z045-2FFG900C 
system-on-chip (SoC), which is a circuit 
integrating CPU, FPGA and I/O all on 
a single substrate [25]. We chose an SoC 
since it provides significant flexibility in 
the FPGA portion of the platform, thus 
allowing us to fully evaluate the trade-
offs during system design. Moreover, the 
Zynq-7000 fully supports embedded Linux, 
which in effect makes the ZC706 a good 
prototype for a wireless platform. Our 
Zynq-7000 contains two ARM Cortex-A9 
MPCore CPUs and a Kintex-7 FPGA 
[26], running on top of a Xilinx ZC706 
evaluation board [27]. To study our system 
under realistic channel environments, we 
have used the experimental setup shown 
in Figure 5. These scenarios investigate a 
line-of-sight (LOS) configuration where 
the transmitter is placed approximately 3m 
from the receiver, and a challenging non-
line-of-sight (NLOS) channel condition 
where the transmitter is placed at 7m from  
the receiver and in the presence of several  
obstacles between them. Thus, the experi- 
ments were performed in a contested 
wireless environment with severe inter- 
ference from nearby Wi-Fi devices as well 
as multipath effect.

As far as the data collection and testing 
process is concerned, we first constructed a 
~10GB dataset by collecting waveform data 

in the line-of-sight (LOS) configuration, 
then used this data to train RFNet through 
Keras. Then, we tested our models on 
live-collected data in both LOS and NLOS 
conditions. The transmitter radio used was a 
Zedboard equipped with an AD9361 as RF 
front-end and using Gnuradio for baseband 
processing. Waveforms were transmitted at 
center frequency of 2.432 GHz (i.e., Wi-Fi’s  
channel 5). To train RFNet, we use an 
ℓ2 regularization parameter λ = 0.0001. 
We also use an Adam optimizer with a 
learning rate of l = 10−4 and categorical 
cross-entropy as a loss function. All 
architectures are implemented in Python, 
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on top of the Keras framework and with 
Tensorflow as the backend engine. 

We evaluated our approach on an OFDM 
system (in short, Poly-OFDM) which sup-
ports 3 different FFT sizes (64, 128, 256) 
and 3 different symbol modulations in the 
FFT bins (BPSK, QPSK, 8PSK), creating in 
total a combination of 9 different parameter 
sets, which are switched pseudo-randomly 
by the transmitter. A demo video where the 
transmitter switches FFT size every 0.5s is 
available at https://youtu.be/5vf_pb0nvKk.  
In the following, we use the C=25,25, 
20x20, pipelined RFNet architecture, which 
presents latency of about 17ms [28]. In these  

FIGURE 6. Comparison between Oracle and Poly-OFDM (left) LOS and (right) NLOS scenarios.

FIGURE 5. Left: Placement of the radios for experimental evaluation. Right: Experimental setting. 

 0
 50

 100
 150
 200
 250

FFT = 64 FFT = 128 FFT = 256

Th
ro

ug
hp

ut
 (K

B/
s)

BPSK, Oracle
BPSK, Poly-OFDM

QPSK, Oracle

QPSK, Poly-OFDM
8PSK, Oracle

8PSK, Poly-OFDM

 0
 10
 20
 30
 40
 50

FFT = 64 FFT = 128 FFT = 256

Th
ro

ug
hp

ut
 (K

B/
s)

BPSK, Oracle
BPSK, Poly-OFDM

QPSK, Oracle

QPSK, Poly-OFDM
8PSK, Oracle

8PSK, Poly-OFDM

(a)FIGURE 4. RFNet Architecture. 



33September 2021 | Volume 25, Issue 3   GetMobile

[HIGHLIGHTS]

experiments, we set (i) the transmitter’s  
sampling rate to 5M samples/sec; the buf-
fer size is set to 250k I/Q samples; (iii) the 
switching of the transmitter to 250ms. 
Thus, RFNet is run approximately five 
times during each switching time.

The most critical aspect to be evaluated 
is how Poly-OFDM, an inference-based 
system, compares with an ideal system that 
has perfect knowledge of the modulation 
and FFT size being used by the transmit-
ter at each time, which we call Oracle, for 
simplicity. Although Oracle cannot be 
implemented in practice, we believe this 
experiment is crucial to understand what 
the throughput loss with respect to a system 
is where the physical-layer configuration  
is known a priori. Figure 6 shows the com- 

parison between Oracle and Poly-OFDM  
as a function of the FFT size and the symbol 
modulation. We notice that the overall 
throughput results decrease in the NLOS 
scenario, which is expected, given the impair-
ments imposed by the challenging channel 
conditions. On the other hand, the results in 
Figure 6 confirm that Poly-OFDM is able to 
obtain similar throughput performance with 
that of a traditional OFDM system, obtaining 
on the average 90% and 87% throughput of 
that of the traditional system. n
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