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Abstract— Radio access network (RAN) slicing is a virtual-
ization technology that partitions radio resources into multiple
autonomous virtual networks. Since RAN slicing can be tailored
to provide diverse performance requirements, it will be pivotal
to achieve the high-throughput and low-latency communications
that next-generation (5G) systems have long yearned for. To this
end, effective RAN slicing algorithms must (i) partition radio
resources so as to leverage coordination among multiple base
stations and thus boost network throughput; and (ii) reduce
interference across different slices to guarantee slice isolation
and avoid performance degradation. The ultimate goal of this
paper is to design RAN slicing algorithms that address the
above two requirements. First, we show that the RAN slicing
problem can be formulated as a 0-1 Quadratic Programming
problem, and we prove its NP-hardness. Second, we propose
an optimal solution for small-scale 5G network deployments,
and we present three approximation algorithms to make the
optimization problem tractable when the network size increases.
We first analyze the performance of our algorithms through
simulations, and then demonstrate their performance through
experiments on a standard-compliant LTE testbed with 2 base
stations and 6 smartphones. Our results show that not only do our
algorithms efficiently partition RAN resources, but also improve
network throughput by 27% and increase by 2× the signal-to-
interference-plus-noise ratio.

Index Terms— Network slicing, 5G, radio access network
(RAN), interference management.

I. INTRODUCTION

THE sheer number of mobile subscriptions worldwide—
predicted to be around 8.9 billions by the end

of 2025 [1]—will generate amounts of traffic that currently
commercially-available wireless infrastructures and spectrum
bands are not able to support [2]. Critically, traditional
one-size-fits-all resource allocation policies will not enable
dynamic, effective and efficient radio access strategies, which
motivates the already increasing demand for novel solutions
to design and deploy faster, lower-latency wireless cellular
connections [3], [4].

To address the above issues, radio access network (RAN)
slicing has been recently welcomed as a promising approach
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by the academia and industry alike [5]–[15]. This technology
allows multiple mobile virtual network operators (MVNOs)
to share the same physical infrastructure—ultimately realizing
a game-changing vision that completely overturns the tradi-
tional model of single ownership of all network resources.
Although a similar concept is already widely applied in the
context of cloud computing by companies such as Amazon
and Microsoft [16], RAN slicing is an intrinsically different
problem as: (i) Spectrum is a scarce resource for which
over-provisioning is not possible [17], and (ii) interference
jeopardizes isolation across slices belonging to different
MVNOs, thus resulting in performance degradation if not
handled properly [10], [18].

As shown in Fig. 1, in RAN slicing applications each
MVNO controls a separate “slice” of the network. Slices
can be assigned/revoked by the Infrastructure Provider (IP)
which determines the slices to be admitted to the system and
how many resources each slice should receive. Once RAN
slicing policies have been defined, a key problem is how to
allocate the spectrum resource blocks (RBs) as prescribed by
the slicing policy. This problem, also referred to as the RAN
slicing enforcement problem (RSEP) [10], ensures that if an
MVNO has been assigned a slice of 15% of the spectrum
resources, such MVNO receives approximately 15% of the
available RBs.

The design and evaluation of RAN slicing enforce-
ment algorithms is paramount to implement in practice
the slicing policy of the IP. Moreover, to be effec-
tive, RAN slicing enforcement algorithms must facilitate
interference-mitigating strategies such as inter-base station
power control (IBSPC) [10], [19], [20], MIMO [21], and coor-
dinated multi-point (CoMP) [21]–[23] schemes such as Joint
Transmission (JT) [24], [25]. Therefore, it becomes imperative
to design effective and efficient slicing enforcement algorithms
assigning the same (or similar in time/frequency) RBs to the
same MVNOs when BSs interfere among themselves.

To illustrate the above point, we consider the cellular
network scenario depicted in Fig. 1. Here, the IP administers
two BSs (assumed to be close enough to interfere with each
other) and 16 RBs (i.e., 4 frequency units during 4 time
units). We consider the case where three MVNOs, namely
M1, M2 and M3, have been assigned the following slice:
M1 = 25%, M2 = 50%, M3 = 25%, on both the BSs. Fig. 1a
shows an optimum slicing enforcement, represented as two
RB allocation matrices (RBAMs), where inter-MVNO inter-
ference is absent (i.e., MVNOs control the same RBs at the
two BSs). In this case, MVNOs have maximum flexibility and
can easily mitigate interference between their cellular users
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Fig. 1. Optimum and sub-optimum RAN slicing enforcement.

Fig. 2. Impact of coordination-based slicing on network throughput. Lines
represents throughput measurements, shaded areas indicate gains and losses.

residing in the two BSs by using IBSPC. Conversely, Fig. 1b
shows sub-optimum RBAMs causing inter-MVNO interfer-
ence during 12 RBs, which will likely result in performance
degradation due to poor interference management.

To further demonstrate the negative impact of inter-MVNO
interference, we ran a series of experiments on the
LTE-compliant testbed described in Section VIII. Similarly to
Fig. 1, in such experiments we deploy two LTE base stations
and instantiate two RAN slices controlled by MVNOs M1

and M2, respectively. Each slice is assigned with 50% of the
available RBs and serves a set of cellular users (i.e., com-
mercial LTE smartphones). In Fig. 2, we report the network
throughput of the network. Specifically, we compare measured
throughput with (RBs are allocated to minimize inter-MVNO
interference as in Fig. 1a) and without (Fig. 1b) slice isolation.
It is easy to notice that slice isolation considerably improves
network throughput and provides a throughput gain up to
3 Mbps. In Section VIII, we show how our algorithms con-
siderably improve network throughput with respect to slicing
enforcement algorithms that do not enforce isolation across
slices, such as the one in Fig. 1b.

Although the problem of RAN slicing has attracted large
interest [7]–[9], [11]–[15], [26]–[29], only few works have
tackled the issue of physical-level allocation of spectrum
resources to MVNOs [10]. This is not without a reason;
the design of slicing enforcement algorithms presents the
following unique challenges, which are substantially absent
in traditional RAN resource allocation scenarios:

1) Enabling of Advanced 5G Technologies: 5G systems will
heavily rely upon advanced signal processing and RF
transmission technologies such as IBSPC, JC, CoMP
and MIMO. This techniques considerably improve net-
work performance, but require coordination among BSs

in proximity. For this reason, the RB allocation should
facilitate and foster such coordination;

2) Isolation: As demonstrated in Fig. 2, to increase effi-
ciency, orthogonality among each RAN slice must
be ensured. That is, each RB should be allocated
to only one MVNO to avoid interference and other
performance-degrading factors [7], [30], [31];

3) Contract Compliance: MVNOs stipulate contracts with
the IP to obtain control over the amount of resources
specified by the slicing policy. In other words, the RSEP
must guarantee that if an MVNO has been assigned 30%
of spectrum resources and it is paying to get them, then
it should also receive 30% of the total RBs available.

The objective of this article is to design, analyze and
experimentally evaluate RAN slicing enforcement algorithms
that address the three critical challenges mentioned above.
Specifically, in this paper we make the following contributions:

• We formulate the RAN slicing enforcement problem
(RSEP), and show that it is NP-hard. Therefore, we pro-
pose approximation and heuristic solutions tailored for
different network scales, optimality and timing require-
ments;

• We show via simulations that the computation time of
the proposed algorithms can be as low as few hun-
dreds of microseconds without considerably impacting
the overall efficiency of the computed solutions. We also
show that by enforcing slice orthogonality, the pro-
posed approach reduces inter-MVNO interference, thus
effectively doubling the overall signal-to-interference-
plus-noise ratio (SINR) of the network if compared to
traditional RAN slicing enforcement approaches;

• We demonstrate the effectiveness of the proposed
algorithms through experimental evaluation on a
LTE-compliant testbed composed of 2 LTE base
stations and 6 commercial off-the-shelf (COTS) users.
Results show that our approach outperforms other
slicing techniques that do not enforce isolation across
RAN slices. Specifically, our algorithms compute
slicing strategies that lead to SINR and throughput
improvements up to 27%.

The remainder of this paper is organized as follows.
Section II surveys the literature on the topic. The considered
RAN model is illustrated in Section III; Section IV intro-
duces the RSEP problem, and Section V presents optimal,
approximated and heuristic solutions to the RSEP. Section VI
presents two effective complexity reduction techniques to
further speed-up the computation of enforcement strategies.
The performance of the proposed algorithms are assessed
numerically and experimentally in Sections VII and VIII,
respectively. Final remarks are given in Section IX, which
concludes the article.

II. RELATED WORK

The problem of determining how many resources each RAN
slice should receive, also known as RAN slicing [7], [28], [32],
has received significant interest from the research community
over the last years; for excellent surveys on recent work on
the topic the reader may refer to [26], [27]. Theoretical tools,
ranging from optimization [11], [33]–[36], auctions [37], game
theory [38]–[40] and artificial intelligence [13], [41] have
been proposed. However, such work does not address how to
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actually deploy RAN slices on top of the underlying physical
network.

This key aspect has stimulated the research community to
research the enforcement of RAN slicing policies. Prior work
[7], [8], [32], [42], [43] virtualizes the available resources
to create “pools” that are then shared and allocated among
the MVNOs. This approach, however, may be ineffective
in scenarios where fine-grained control of physical-layer
resources is required, for example, to enable IBSPC, CoMP
and beamforming.

Recent work has focused on addressing the RAN slicing
enforcement problem from a resource allocation perspective.
In [9], Mancuso et al. present a stochastic model to predict
the impact of different enforcement policies on the overall
performance of a sliced cell. Chang et al. [30] propose a
partitioning algorithm that allocates the available RBs to
each requesting MVNO by simultaneously maximizing the
percentage of satisfied MVNOs while allocating the minimum
amount of RBs. Similarly, Han et al. [44] consider genetic
algorithms to assign the available RBs to the MVNOs such that
a long-term utility is maximized. However, [9], [30], [44] ana-
lyze the problem considering a network with a single BS, and
thus cannot be applied in multi-cell networks where MVNOs
request different amounts of resources on different BSs. The
authors in [31], [45] identify fine-grained RB management as
a promising approach to guarantee orthogonality and reduce
inter-MVNO interference, thus deploying highly-efficient 5G
networks. However, [31] does not provide any algorithm
to enforce slicing policies to maximize network efficiency,
while [45] does not consider interference among BSs when
allocating RBs.

In our prior work [10], we have proposed algorithms
to (i) satisfy MVNOs requests; (ii) enforce orthogonality
by reducing inter-MVNO interference across multiple BSs,
and (iii) enable advanced coordination-based communication
techniques. In this paper we ameliorate [10] by (i) presenting
an improved heuristic algorithm that can compute a solution
to the RSEP in few milliseconds while achieving a small
optimality gap; (ii) investigating the impact of different
enforcement policies on the interference of the network,
showing that the proposed approach improves the SINR of
the system by 2 times; and (iii) implementing our algorithms,
and demonstrate their effectiveness, on a standard-compliant
LTE testbed with 2 base stations and 6 cellular users.
We show that not only our approach improves the overall
throughput of the network by 27%, but it can be seamlessly
integrated in standard 5G systems.

III. SYSTEM MODEL AND RAN SLICING OVERVIEW

We consider the RAN shown in Fig. 3, consisting of a
set B = {1, 2, . . . , B} of B base stations (BSs) associated
with a coverage area ρb, b ∈ B. Two BSs b and b′ are
interfering (or adjacent) if ρb ∩ ρ′b �= ∅, i.e., their coverage
areas overlap. We define Y = (yb,b′)b,b′∈B as a symmetric
adjacency matrix where yb,b = 0 for all b ∈ B, yb,b′ = 1 if
BSs b and b′ interfere with each other, and yb,b′ = 0 otherwise.
An illustrative example of the adjacency matrix is shown in
Fig. 3.

The RAN is administered by an IP, who periodically rents
virtual RAN slices built on top of the underlying physical
network B to a set M = {1, 2, . . . , M} of M MVNOs.

Fig. 3. An illustrative example with 4 BSs and their corresponding adjacency
matrix Y. Green areas show interference (or adjacency) regions where
coverage areas overlap.

TABLE I

SUMMARY OF NOTATION

Without loss of generality, we assume RAN slices are valid
for T consecutive time slots [10]. We can utilize the T
parameter to model different scenarios with different temporal
scales. As an example, large T values can be used to model
environments with slow-varying dynamics (e.g., cellular net-
works in rural areas during nighttime), and small T values
are used to model environments with fast-varying dynamics
(e.g., urban areas during daytime) requiring frequent update
of RAN slice enforcement policies to adapt to mobility and
channel dynamics.

In line with 5G NR and LTE standards, we assume that
spectrum resources are represented as RBs, where each RB
corresponds to the minimum scheduling unit [46]. We also
consider an OFDMA channel access scheme where RBs are
organized as in a time-frequency resource grid with NRB

subcarriers and T temporal slots. Thus, the set of available
resources at each BS is R, with |R| = NRB · T , where
each RB in R can be represented as a 2-tuple (n, t) with
n = 1, 2, . . . , NRB and t = 1, 2, . . . , T . We assume that all
BSs share the same resource grid structure, the case where
this assumption is relaxed is considered in [47].

The interaction between MVNOs and the IP can be sum-
marized as illustrated in Fig. 4. First, (i) MVNOs’ RAN slice
requests are collected by the IP. Then, (ii) the IP determines
which requests should be admitted to the system, and generates
a slicing profile L = (Lm,b)m∈M,b∈B where Lm,b represents
the amount of resources that the IP should allocate to MVNO
m ∈M on BS b in the time span 0 ≤ t ≤ T (i.e., RAN Slice
Assignment), and (iii) computes a slicing enforcement policy
π that allocates RBs among the MVNOs such that all admitted
requests are satisfied (i.e., RAN Slice Enforcement Problem).

Problem (ii) has been already extensively investigated in the
literature [7], [26]–[28], [32]–[35], [37]–[39]. For this reason,
in this paper we instead address point (iii) by showing how
the IP can compute an efficient slicing enforcement policy π
that satisfies the three requirements described in Section I, i.e.,
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Fig. 4. The RAN slicing architecture.

enabling of advanced 5G technologies, isolation and contract
compliance.

In this paper, We tackle the problem from an IP’s point
of view which has no access to mobile users’ location,
demanded traffic and channel conditions. Thus, we consider
the case where MVNOs submit slice requests that reflect the
current state of the network and, for privacy and business
concerns, do not share the above information with the IP.
Accordingly, MVNOs requests a target number of RBs that
guarantees satisfaction of service-level agreements (SLAs) and
meet desired Key Performance Indicator (KPI) metrics.

IV. THE RAN SLICING ENFORCEMENT PROBLEM (RSEP)

For any given slicing profile L and BS b, we identify the
subset Mb ⊆M of MVNOs that include BS b in their RAN
slice as Mb = {m ∈M : Lm,b > 0}.

Let xm,b,n,t ∈ {0, 1} be the RB allocation indicator such
that xm,b,n,t = 1 if RB (n, t) ∈ R is allocated to MVNO
m, xm,b,n,t = 0 otherwise. Also, let π = (πb)b∈B be the
slicing enforcement policy, where πb = (πm,b)m∈M and πm,b

represents the set of RBs on BS b that are allocated to MVNO
m. In more detail, for any RB (n, t) ∈ R, we have that (n, t) ∈
πm,b ⇐⇒ xm,b,n,t = 1. Hence, the set Π of all feasible
slicing enforcement policies π can be defined as:

Π = {π = (πm,b)m∈M,b∈B : |πm,b| = Lm,b ∧
πm,b ∩ πm′,b = ∅ ∀m �= m′, m, m′ ∈M, b ∈ B} (1)

To properly formulate the RSEP, we now introduce the
concept of linked RBs.

Definition 1 (Linked RBs): A given RB (n, t) on the
resource grid is linked to MVNO m on two interfering BS
b and b′ if and only if xm,b,n,t = xm,b′,n,t = 1 and yb,b′ = 1.

Linked RBs indicate those RBs that have been assigned to
the same MVNO on adjacent BSs. Specifically, a linked RB
allows the corresponding MVNO to simultaneously access a
specific spectrum portion in the same time slot from two or
more BSs. This is relevant because (i) linked RBs enable
5G advanced transmission schemes (e.g., distributed beam-
forming, MIMO, CoMP transmissions and power control)
among nearby BSs; (ii) as shown in Fig. 1, linked RBs can
be used to deploy fully-orthogonal RAN slices that do not
interfere with each other, and hence (iii) linked RBs do not
generate inter-MVNO interference, thus avoiding any need
for centralized coordination or distributed coordination among
MVNOs.

It is clear that the maximization of the number of simul-
taneously linked RBs addresses the three issues identi-
fied in Section I. Thus, we focus our attention on this
approach. By leveraging the concept of linked RBs, for each

MVNO m we define the number of linked RBs associated to
interfering BSs b and b′, i.e., yb,b′ = 1, as follows:

nb,b′,m = yb,b′ · |πm,b ∩ πm,b′ |, (2)

where the relationship nb,b′,m = nb′,b,m always holds for all
b, b′ ∈ B and m ∈M.

For each MVNO m ∈ M, the total number Nm of linked
RBs on the corresponding RAN slicing profile L is

Nm =
1
2

∑

b∈B

∑

b′∈B\{b}
yb,b′ · nb,b′,m, (3)

where the 1/2 factor is introduced to avoid counting the same
RBs twice, and nb,b′,m is defined in (2).

With (2) and (3) at hand, we can formally define the RSEP
as follows:

maximize
π∈Π

∑

m∈M
Nm (RSEP)

In a nutshell, the objective of Problem RSEP is to compute a
feasible slicing enforcement policy π that maximizes the total
number of linked RBs while guaranteeing that such policy
does not violate the feasibility constraint π ∈ Π. Moreover,
Fig. 1 shows that the formulation in Problem RSEP is particu-
larly well-suited for RAN slicing problems. This is because it
satisfies MVNOs requirements in terms of number of obtained
RBs, helps orthogonality among slices through the reduction
of inter-MVNO interference, and enables coordination-based
5G communications such as CoMP, JT and beamforming. In
Sections VII and VIII, we will demonstrate how increasing the
number of linked RBs of the system improves key performance
metrics such as throughput and SINR.

V. ADDRESSING THE RSEP PROBLEM

To solve Problem RSEP, we need to compute a slicing
enforcement policy by exploring the feasible set Π searching
for a solution that maximizes the number of linked RBs. How-
ever, the formulation in Problem RSEP does not in itself pro-
vide any intuitions on how a solution can be computed. For this
reason, now we: (i) Reformulate Problem RSEP by using the
RB allocation indicators introduced in Section IV; (ii) show
that the resulting problem is NP-hard, and (iii) present a
number of algorithms to address and solve Problem RSEP.

A. Optimal Solution

By using the definition of the RB allocation indicator
xm,b,n,t ∈ {0, 1} and from (1), (3) can be reformulated as

Nm =
1
2

T∑

t=1

NRB∑

n=1

∑

b∈B

∑

b′∈B\{b}
yb,b′xm,b,n,txm,b′,n,t (4)

Let us consider the matrices B = Y ⊗ INRB ·T and Q =
IM ⊗B, where ⊗ stands for Kronecker product and Ik is the
k × k identity matrix. From (4), it can be easily shown that

∑

m∈M
Nm =

1
2
x�Qx.
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Accordingly, Problem RSEP can be reformulated as

maximize
x

1
2
x�Qx (RSEP-QP)

subject to
T∑

t=1

NRB∑

n=1

xm,b,n,t = Lm,b, ∀b ∈ B, ∀m∈M
(C1)

∑

m∈M
xm,b,n,t ≤ 1, ∀(n, t) ∈ R, ∀b ∈ B

(C2)

xm,b,n,t∈{0, 1}, ∀(n, t)∈R, ∀b∈B, ∀m∈M
(C3)

where x = (xm,b,n,t)m,b,n,t is a MBNRBT ×1 column array.
In Problem RSEP-QP, Constraint (C1) ensures that all

MVNOs receive the assigned number of RBs, while Con-
straint (C2) guarantees that each RB is allocated to one MVNO
only. Finally, Constraint (C3) expresses the boolean nature of
the RB allocation indicator. We point out that problems RSEP
and RSEP-QP are equivalent. Indeed, the latter is a reformu-
lation of the former in terms of the RB allocation indicator.
However, we have been able to show that the RSEP can be
modeled as a 0-1 (or binary) Quadratic Programming (QP)
problem. Thus, in Theorem 1 we prove that Problem RSEP-
QP—and thus Problem RSEP—is NP-Hard.

Theorem 1: Problem RSEP-QP is NP-hard.
Proof: To prove the NP-hardness of Problem RSEP-QP,

it is sufficient to show that the matrix Q is indefinite, i.e.,
it admits both positive and negative eigenvalues. Indeed, it is
well-known [48], [49] that even real-valued non-binary QP
problems are NP-hard when Q is indefinite.

From the definition of B and Y, matrix Q has all zero
entries in the main diagonal. Accordingly, Q is a zero-diagonal
(or hollow) symmetric matrix. Let λ be the set of eigenvalues
of Q. Notice that

∑
λi∈λ λi = Tr{Q}, and Tr{Q} = 0 in

our case. Thus, all the eigenvalues of Q must sum up to
zero, meaning that either all eigenvalues are equal to zero,
or Q has both positive and negative eigenvalues. Thanks to the
symmetry of Q, we can exclude the former case since it would
imply that Q is the zero-matrix (i.e., there is no interference
among BSs and yb,b′ = 0 for all b, b′ ∈ B). Therefore, Q
must have both positive and negative eigenvalues, i.e., Q is
indefinite. This proves the theorem.

The indefiniteness of the Q matrix prevents the application
of well-established results on quadratic functions where posi-
tive/negative definiteness guarantees the existence of a unique
global solution a priori.

To find an optimal solution to Problem RSEP-QP it is
possible to apply spatial Branch and Bound (sB&B) techniques
for non-linear non-convex problems. These algorithms have
been shown to globally solve these class of problems by
iteratively generating convex relaxations whose accuracy is
refined at each iterations [50]. Although sB&B makes it
possible to globally solve Problem RSEP-QP, its complexity
is still too high to be effectively employed in real-world 5G
network deployments where the number of base stations and
users is extremely large.

The objective of the following two subsections is to address
the above issues and design algorithms that can compute
effective RAN slice enforcing policies with low computational
complexity.

B. Approximated Solution

Let V = M ·B ·NRB ·T , and let us consider the following
transformed version of Problem RSEP-QP

maximize
x

1
2
x�(Q + 2λIV )x− λe�x (RSEP-EQ)

subject to (C1), (C2)

0≤xm,b,n,t≤1, ∀(n, t)∈R, ∀b∈B, ∀m∈M
(C4)

where λ ∈ R is a real-valued parameter whose relevance to
Problem RSEP-EQ will be explained in Theorem 2, and e� =
(1, 1, . . . , 1). The following theorem holds.

Theorem 2: There exists λ ∈ R such that Problem RSEP-
EQ is equivalent to Problem RSEP-QP. Also, let z∗ be
the largest (positive) eigenvalue of Q. For any λ ≥ −z∗,
Problem RSEP-EQ is a quadratic convex problem over the
unit hypercube.

Proof: Intuitively, the utility function in Problem RSEP-
EQ introduces the term λx�(e − x) which generates a cost,
or a penalty, proportional to λ when constraint xm,b,n,t ∈
{0, 1} is not satisfied. Accordingly, the binary constraint in
Constraint (C3) can be dropped and relaxed with the unit
hypercube constraint 0 ≤ xm,b,n,t ≤ 1. Notice that Q contains
only 0-1 entries and xm,b,n,t ≤ 1, which implies that x�Qx
is always bounded and finite. Also, x�Qx has continuous and
bounded first-order derivatives over the unit hypercube, i.e., it
is Lipschitz-continuous in any open set that contains the unit
hypercube. From [51, Th. 3.1], it must exist λ0 ∈ R such that
Problems RSEP-EQ and RSEP-QP are equivalent for all λ ≥
λ0. In Theorem 1 we have proved that the Q matrix admits
both negative and positive eigenvalues. Accordingly, let z be
the set of eigenvalues of Q and z∗ = max{z1, z2, . . . , z|z|}.
It is possible to show that if λ ≥ z∗, then the matrix Q+2λIV

is positive semi-definite. Thus, Problem RSEP-EQ is convex
if λ ≥ z∗, which proves the theorem.

Remarks: Theorem 2 shows that we can relax the binary
constraint of Problem RSEP-QP with a penalty term λ. When
λ is large enough, RSEP-EQ and RSEP-QP are equivalent and
produce the same solutions. Otherwise, equivalence does not
hold and solutions computed by RSEP-EQ might substantially
deviate from the optimal ones computed by RSEP-QP.

In general, local and global solutions of convex quadratic
maximization problems (and the corresponding concave
quadratic minimization problems) lie on the vertices of the
feasibility set [52]. Since the vertex space is considerably
smaller than the complete feasibility set Π considered in
Problem RSEP-QP, Problem RSEP-EQ is easier to solve when
compared to Problem RSEP-QP. Specifically, approaches such
as cutting plane and extreme point ranking methods [52] can
be used to efficiently solve Problem RSEP-EQ.

C. Heuristic Solution

Although Problem RSEP-EQ has lower complexity than
Problem RSEP-QP, in the worst case it still requires expo-
nential time with respect to the number of vertices, which
spurred us to design polynomial-time algorithms.

Given Problem RSEP-QP maximizes the number of shared
RBs, we can allocate as many linked RBs as possible to
those MVNOs that request the highest amount of RBs on
multiple interfering BSs. Indeed, MVNOs that request the
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Algorithm 1 RSEP-MLF
1: Input B;M;Y;L;
2: Output A MLF RBs allocation xG = (xG

m,b,n,t)m,b,n,t;
3: Set xG

m,b,n,t = 0 for all m ∈M, b ∈ B, (n, t) ∈ R;
4: Compute the linking index l = (lm)m∈M;
5: MG ← Sort M by lm in decreasing order;
6: while MG �= ∅ do
7: for each BS b ∈ B do
8: Update xG

m,b,n,t by allocating LMG(1),b subsequent
RBs to MVNO m on BS b;

9: end for
10: MG ←MG \ {MG(1)};
11: end while

greatest number of resources on different interfering BSs
are also expected to produce a high number of linked RBs.
Accordingly, for each MVNO m we define the linking index
lm as

lm =
∑

b∈B

∑

b′∈B\{b}
min{Lm,b, Lm,b′}yb,b′ (5)

The linking index is used to sequentially allocate RBs to
those MVNOs with the highest linking index. We refer to this
procedure as the Most Linked First (MLF) procedure, which
is illustrated in Algorithm 1 and works as follows:

1) we generate set MG = M in ascending order of lm.
Specifically, for any m, k ∈MG, m < k if lm ≥ lk;

2) we start allocating RBs on all BSs in sequential order to
the first MVNO in MG, i.e., the MVNO whose linking
index lm is the highest among all MVNOs inM. When
all RBs are allocated to the considered MVNO, say m′,
we remove it from MG and we set lm′ = 0;

3) if MG = ∅, we stop. Otherwise, we re-execute Step
2 until all MVNOs are assigned to the required RBs.

Line 4 requires to compute (5) which has complexity
O(MB2), while Line 5 has complexity O(M log M). The
while loop at Line 6 has complexity O(NRBBM).
Thus, the complexity of MLF is O(C), where C =
max{MB2, M log M, NRB ·B ·M}.

D. Improved RSEP-MLF

The greedy algorithm RSEP-MLF enjoys fast convergence
time at the price of sub-optimal performance [10]. Thus,
we design a novel heuristic that reduces the gap between
RSEP-QP and RSEP-MLF while keeping the computational
complexity as low as possible. To this end, we present RSEP-
IMLF, which improves upon RSEP-MLF by iteratively adjust-
ing the RB allocation strategy to increase the number of linked
RBs.

First, note that the RSEP is shift-invariant with respect
to the indexing of the RB (n) and temporal slot (t). This
is because, for any given solution x∗, the solution x with
xm,r,1,t = x∗

m,r,NRB ,t and xm,r,NRB ,t = x∗
m,r,1,t for all m, r

and t is clearly still equivalent to x∗ as it produces the same
number of linked RBs as x∗. In general, we can extend this
result to any reshape procedure that maintains the cardinality
of R equal to NRB · T . We show this in Fig. 5, where the
original RB grid (left) contains NRB · T = 12 RBs and has

Fig. 5. An illustrative example of a RB grid reshaping with B = 2 BSs,
M = 3 MVNOs and 6 linked RBs. The original RB grid is shown on the
left, while the reshaped grid is shown on the right.

Fig. 6. An illustrative example of a RB allocation matrix (RBAM) and
swapping procedures with B = 4 BSs and M = 5 MVNOs.

6 linked RBs. Fig. 5 shows that by reshaping the resource grid
into a row vector does not change the amount of linked RBs.

Another important notion is the concept of RB allocation
matrix (RBAM). Let us consider the reshaped RB grid R ∈
R

NRBT×1, the RBAM is represented by the matrix σ =
(σb)b∈B where σb(x∗) = (σb,τ )τ∈R : X → R. Henceforth, b
and τ will represent rows and columns of σ, respectively. For
any slicing enforcement solution x ∈ X , the RBAM builds
a map between each RB in R and the MVNO that has been
assigned with that RB on BS b. Let Mb,τ (x∗) be the MVNO
that RB τ has been assigned to, i.e., the MVNO m such
that xm,b,τ = 1. Accordingly, we set σb,τ = Mb,τ (x∗). An
example of a possible RBAM with B = 4 BSs and M = 5
MVNOs is shown in Fig. 6.

We are now ready to introduce the concept of swapping.
Specifically, we say that two columns τ1 and τ2 of the RBAM
are coherently swapped when all their corresponding entries
σb,τ1 are replaced with those of σb,τ2 and vice versa. On the
contrary, two columns are partially swapped when only a
portion of entries is replaced among two columns. An example
of a coherent swap is shown in the right side of Fig. 6, where
the third and sixth columns are swapped. Instead, the left side
shows a partial swap where only the two bottom elements of
the columns of the RBAM are swapped.

By leveraging the concepts of reshaping, RBAM and
swapping, we can finally develop an improved version of
RSEP-MLF (i.e., RSEP-IMLF) which works as follows:

1) Compute a slicing enforcement solution x ∈ X via
RSEP-MLF and derive the corresponding RBAM σ.
Define B∗ = B;

2) Select the row b0 ∈ B∗ in σ with the smallest number
of distinct MVNOs and remove it from B∗, i.e., B∗ =
B∗ \ {b0};

3) Pick the row b∗ ∈ B∗ that shares the highest number of
linked RBs with b0;

4) Select at random two columns τ1 and τ2. Perform a
single-row partial swap on the RBAM σ by swapping
the two elements (b0, τ1) and (b0, τ2). If the partial swap
has improved the number of linked RBs, we update
the RBAM accordingly. This step is repeated at most
IS times, where IS > 0 is a parameter specifying the
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Algorithm 2 RSEP-IMLF
1: Input B;M;Y;L;
2: Output A RBs allocation xG = (xG

m,b,n,t)m,b,n,t;
3: Set B∗ ← B;
4: x∗ ← A MLF RB allocation computed through Algo-

rithm 1;
5: σ ← The RBAM for x∗;
6: b0 ← The row of σ with the smallest number of distinct

MVNOs;
7: while |B∗| �= 0 do
8: b∗ ← The row that shares the highest number of linked

RBs with b0;
9: while i ≤ IS do

10: (τ1, τ2)← Selects two columns at random;
11: σ∗ ← A copy of σ with elements (b0, τ1) and

(b0, τ2) swapped;
12: if number of linked RBs has improved then
13: σ ← σ∗;
14: end if
15: i← i + 1;
16: end while
17: B∗ ← B∗ \ {b0};
18: end while

maximum number of trials RSEP-IMLF tries to improve
upon the current slicing enforcement strategy;

5) If B∗ = ∅, we stop. Otherwise we re-execute Step 2).
The rationale behind RSEP-IMLF is to compute a

sub-optimal solution fast, and then iteratively try to incre-
ment the total number of linked RBs by testing a lim-
ited amount of swapping combinations. As discussed in
Section V-C, the complexity of Step 1 is O(C), where C =
max{MB2, M log M, NRB ·B ·M}. Step 2 is executed once,
and its complexity is O(B), while the complexity of Step 3 is
O(BIS). Accordingly, the overall complexity of RSEP-IMLF
is O(C+B+BIS) = O(C+BIS), meaning that RSEP-IMLF
contributes to the overall complexity of RSEP-MLF with an
additional linear complexity term.

E. Fairness Aspects

As shown in (RSEP-QP), we aim at maximizing the number
of linked RBs of the system without considering how these
RBs are distributed across the different slices. On the one hand,
this makes it possible to assign RBs in a way that reduces
interference and maximizes inter-slice isolation. On the other
hand, different MVNOs can be assigned with different number
of linked RBs, thus resulting in unfair linked RBs distribution.
Although this problem is out of the scope of this paper,
we believe that the problem is extremely challenging and it is
worth of investigation. For this reason, here we discuss two
different approaches that might effectively solve the above
problem and generate more fair enforcement policies. The
simplest approach would be to introduce a new constraint
guaranteeing that a minimum number Nmin of linked RBs
is allocated to each MVNO (i.e., Nm ≥ Nmin). From (4),
this approach would result in a quadratic constraint that might
make the problem unfeasible if Nmin is too large. Another
approach, would be to adapt the objective function of the

RSEP problem via a α-fairness utility. If compared to the
previous approach, this formulation would avoid unfeasibility
of the problem, but would introduce a strong non-linearity in
the objective function that would eventually result in higher
computational complexity.

VI. SPEEDING-UP RSEP-QP AND RSEP-EQ

Although Problems RSEP-QP and RSEP-EQ have exponen-
tial complexity, two intuitions help reduce their complexity by
leveraging specific structural properties of the RSEP.

A. Sparsity

Let xOPT be an optimal solution to either Problem RSEP-
QP or RSEP-EQ. If Lm,b = 0 for a given MVNO m on BS
b, then xOPT

m,b,n,t = 0 for all n and t. Furthermore, we notice
that the complexity of many optimization problems strongly
depends on the number of non-zero entries (i.e., the sparsity) of
the Q matrix [53]. Thus, we reduce the complexity of the two
problems by inducing sparsity through two transformations.
Let m′ and b′ such that Lm′,b′ = 0, for both RSEP-QP and
RSEP-EQ we generate a reduced matrix Q̃ where we set
Qm′,b′,n,t = 0 for all (n, t) ∈ R. For RSEP-QP, it suffices
to replace the Q matrix with Q̃. To keep equivalence between
RSEP-QP and RSEP-EQ, the objective function of RSEP-EQ
is rewritten as

1
2
x�(Q̃ + 2λĨV )x− λ (6)

where ĨV is the identity matrix where we set to zero those
entries corresponding to the 2-tuple (m′, b′).

Note that the two above transformations generate equivalent
problems to RSEP-QP and RSEP-EQ and do not impact the
optimality of the computed solutions. In fact, Constraint (C1)
requires

∑T
t=1

∑NRB

n=1 xm′,b′,n,t = 0 when Lm′,b′ = 0. Since
xm′,b′,n,t ∈ {0, 1}, we have that xm′,b′,n,t = 0 for all
n and t associated to the 2-tuple (m′, b′). That is, at the
optimal solution, xm′,b′,n,t = 0 independently of the value
of qm′,b′,n,t.

B. RB Aggregation

Let K = GCD(L) be the greatest common divisor (GCD)
among all of the elements in the L matrix. We show that
Problems RSEP-QP and RSEP-EQ are equivalent to solve the
same problems with a scaled RB grid, when given conditions
on K , T and NRB are satisfied. Specifically, if K > 1 and
either the number NRB of RBs or the number T of time
slots are proportional to K , the available resources can be
aggregated in groups of K RBs, and each of such groups can
be seen as a single aggregated RB. We refer to such a property
as aggregability of the RSEP, whose definition is as follows.

Definition 2 (Aggregable RSEP): The RSEP is said to be
aggregable if NRB (mod K) = 0 or T (mod K) = 0, where
K =GCD(L)>1 and A(mod B) is the A modulo B operator.

In the first case, we scale the number of RBs as ÑRB =
NRB/K . In the second case, we scale the number of time
slots as T̃ = T/K . That is, for each BS b ∈ B, the set
Rb of available RBs at b is replaced with an aggregated
version of cardinality |R̃b| = NRBT/K where K RBs are
grouped together to create a single RB. We refer to this
low-dimensional RSEP as the aggregated RSEP.
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Theorem 3: Let the RSEP be aggregable, it is possible to
compute an optimal solution to the RSEP by solving the
aggregated RSEP.

Proof: Let Z = NRBT , K > 1 be the GCD of L, P
be the original RSEP problem and P̃ be the aggregated RSEP
with T̃ = T/K . The proof for the case where we aggregate
with respect to ÑRB = NRB/K follows the same steps.
From Section V-D, recall that problem P is shift invariant
with respect to the indexing of n and t. With this feature at
hand, we will show that we can reduce the cardinality of R
by a factor K and still achieve equivalence and optimality.

Let X ∈ R
NRB T̃×K and X̃ ∈ R

NRB T̃×1 be the feasibility
sets of P and P̃ in the RBAM space, respectively. Also, let
fZ(x) : X → N and fZ/K(x) : X̃ → N be the objective
functions of problem P and P̃ , respectively. The optimal
solution to P is denoted as x∗ ∈ X , while the optimal solution
to P̃ is denoted as x̃∗ ∈ X̃ . Due to the optimality of x∗
and x̃∗, we have that fZ(x∗) ≥ fZ(x) for all x ∈ X , and
fZ/K(x̃∗) ≥ fZ/K(x̃) for all x̃ ∈ X̃ . Let x̃∗

A ∈ X be the
solution to P generated by expanding the aggregated optimal
solution x̃∗ to P̃ . Let R ∈ R

NRB T̃×K , the expanded solution
x̃∗

A = (x̃∗
Am,b,τ,k

)m,b,τ,k is generated by setting x̃∗
Am,b,τ,k

=
x̃∗

m,b,τ for all k = 1, . . . , K , m ∈ M and b ∈ B. Intuitively,
we are replicating the matrix x̃∗ by adding K−1 rows whose
entries are identical to those in x̃∗.

We will now prove that P and P̃ are equivalent by contra-
diction. Accordingly, we will negate our hypothesis and we
will assume that the two problems are not equivalent, i.e.,
fZ(x∗) > fZ(x̃∗

A).
Let g(x) : X → N be defined as g(x) = K−1f(x).

Intuitively, if we replace the objective function f(x) of P
with g(x), we obtain the same problem where each linked RB
gives a reward equal to K−1 (f(x) instead provides a unitary
reward for each linked RB). By construction of x̃∗

A, we have
fZ/K(x̃∗) = K−1fZ(x̃∗

A) = g(x̃∗
A). From the assumption

fZ(x∗) > fZ(x̃∗
A), we have that

g(x∗) = K−1fZ(x∗)
> K−1fZ(x̃∗

A)g(x̃∗
A) = fZ/K(x̃∗) (7)

which states that g(x∗) > fZ/K(x̃∗).
To show that this last statement is a contradiction to our

hypothesis (i.e., x̃∗ is optimal for P̃ ), we need to show that
there always exists a mapping that transforms any solution in
X to an equivalent solution in X̃ . That is, we need to find a
function h(x) : X → X̃ such that h(x) = x̂ ∈ X̃ that can be
transformed into x̂A such that fZ/K(x̂) = K−1fZ(x̂A).

In general, such a mapping is not unique, since any optimal
solution in X and X̃ is shift invariant. However, in Appendix A
we present an easy mapping h(x) = x̃ algorithm that, starting
from an optimal solution x ∈ X , always generates an equiva-
lent optimal solution x̃ ∈ X̃ such that fZ/K(x̃) = K−1fZ(x).

The existence of the above mapping implies that x∗
R =

h(x∗) satisfies fZ/K(x∗
R) = K−1fZ(x∗) = g(x∗), which

is clearly a contradiction. In fact, from (7) we have that
fZ/K(x∗

R) = g(x∗) > fZ/K(x̃∗), which implies the existence
of a solution x∗

R that contradicts the optimality of x̃∗ over X̃ .
It follows that fZ/K(x̃∗) = K−1fZ(x∗) must hold. Hence,
any solution x̃∗ to the aggregated RSEP can be expanded to
obtain x̃∗

A that is optimal for the original RSEP. This concludes
the proof.

Fig. 7. Convergence time (s) of the three proposed solutions as a function
of M considering different computational time reduction techniques.

VII. NUMERICAL ANALYSIS

We now assess the performance of the algorithms proposed
in Section V. To this end, we simulate an LTE frequency
division duplexing (FDD) system with 1.4 MHz channel band-
width, which is divided into 72 subcarriers organized into
6 Physical Resource Blocks (PRBs). Each PRB consists of
12 subcarriers and 7 symbols. Time is divided into discrete
time slots called sub-frames. Each sub-frame is formed of two
PRBs, lasts 1 ms, and is the minimum scheduling unit in LTE.
Groups of NSF = 10 sub-frames constitute a frame.

In our analysis, each RB corresponds to one sub-frame,
therefore we consider a total of NRB = 6 RBs per time
slot. Let NF ∈ N be the number of frames within the slicing
enforcing window. It follows that T = NF · NSF . Unless
stated otherwise, we assume that both the interference matrix
Y and the slicing profile matrix L = (Lm,b)m∈M,b∈B defined
in Section III are generated at random at each simulation run.

In order to evaluate the benefits of the proposed approach,
in the following of this section we compare our algorithms
with slice-unaware schemes that do not leverage information
on network topology and interference to instantiate RAN
slices. We refer to this method as the w/o isolation case where
RBs are assigned to requesting MVNOs in a round-robin
fashion with complexity O(1).

The simulator is implemented in MATLAB and is interfaced
with IBM CPLEX optimization toolbox. Specifically, CPLEX
is used to solve RSEP-QP and RSEP-EQ, while the two heuris-
tics RSEP-MLF and RSEP-IMLF have been implemented in
MATLAB only. Results were averaged over 1000 independent
simulation runs.

A. Convergence Time Analysis

Fig. 7 shows the convergence time of the four algorithms
presented in Section V as a function of the number M of
MVNOs when NF = 2. As expected, the algorithm with
the slowest convergence time is the optimal algorithm RSEP-
QP, while the fastest algorithm is RSEP-MLF. Interestingly
enough the convergence time of both RSEP-QP and RSEP-EQ
increases as the number of MVNOs in the network grows,
a behavior that is not exhibited by the two heuristic algorithms
RSEP-MLF and RSEP-IMLF whose convergence time only
slightly increases as a function of M .
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Fig. 8. Convergence time (s) of RSEP-EQ as a function of B considering
different number M of MVNOs.

Fig. 9. Optimality-gap of RSEP-EQ, RSEP-MLF and RSEP-IMLF as a
function of M considering different number B of BSs.

Fig. 7 also shows the impact of the sparsity and RB aggre-
gation mechanisms in Sections VI-A and VI-B on the overall
convergence time. It can be observed that the techniques
presented in Section VI can effectively reduce the compu-
tation time of all the four algorithms. Moreover, we show
that RB aggregation is the technique that produces the best
performance improvement in terms of convergence time.

We point out that RSEP-QP requires approximately 100s
to compute an optimal solution when M = 10 and B = 5
and RSEP-EQ only requires 1s. On the contrary, RSEP-IMLF
computes a solution within few milliseconds, while RSEP-MLF
computes the solution in less than a millisecond.

It is worth to point out that Fig. 7 reveals how the reduction
in terms of convergence time brought by sparsity cannot be
appreciated in small-scale scenarios. For this reason, we have
further investigated the impact of sparsity in large-scale net-
works and the obtained results are presented in Fig. 8. Our
results show that sparsity can effectively reduce the computa-
tion time by several tens of seconds, and the gain increases
as both M and B increase. From Fig. 8 we can conclude that
sparsity is a complexity reduction technique that best performs
in large scale network deployments.

B. Optimality-Gap Analysis

Another crucial aspect is the optimality-gap between the
optimal solution computed by RSEP-QP and those com-
puted through RSEP-EQ/RSEP-MLF algorithms. Although
Theorem 2 shows that (under some conditions) Problem
RSEP-EQ is equivalent to Problem RSEP-QP, we cannot
guarantee that the solution computed by RSEP-EQ is a global
optimum. Indeed, the solver might get stuck in one of the local
maximizers, thus effectively preventing the computation of an
actual global maximizer.

For this reason, in Fig. 9 we investigate the Optimality-gap
of RSEP-EQ, RSEP-MLF and RSEP-IMLF with respect to
an optimal solution computed by RSEP-QP. This performance

metric is defined as one minus the ratio between the utility
function achieved by any of the aforementioned approximation
and heuristic algorithms and that achieved by RSEP-QP. The
closer to zero is the gap, the closer to optimality is the solution
computed by approximation and heuristic algorithms.

Fig. 9 shows that the Optimality-gap increases as the num-
ber of MVNOs and BSs in the network increases. Intuitively,
this is because the feasibility set increases as M and/or B
increase. Given that local maximizers of RSEP-EQ lie on the
vertices of the feasibility set, greater values of M and B
produce a greater number of local maximizers, thus the prob-
ability of getting stuck in a local maximizer increases as well.
Notice that although RSEP-MLF is negligibly affected by the
number of BSs B, it achieves poor performance if compared
to RSEP-EQ. It is worth to mention that RSEP-IMLF is per-
haps the most efficient algorithm which effectively trades-off
between optimality and computational complexity. Indeed,
Figs. 9 and 7 show that RSEP-IMLF can compute RAN
slice enforcement strategies that achieve the same performance
as RSEP-EQ in the order of few milliseconds. Furthermore,
the w/o isolation case employs a round-robin scheme that,
although being fast, results in very high gap.

C. Linked RBs and SINR Analysis

Fig. 10 shows the impact of M on the percentage of
linked RBs of the system when NF = 10, B = 5 and
T = 100. As expected, RSEP-EQ and RSEP-IMLF always
perform better than RSEP-MLF in terms of number of linked
RBs. Moreover, Fig. 10 illustrates that the number of linked
RBs decreases as the number M of MVNOs increases. This
is because, when more MVNOs include the same BS to their
slices, it is harder to guarantee that all MVNOs will receive
the corresponding amount of RBs jointly with a large number
of linked RBs.

As demonstrated in Fig. 10, and if compared to the tra-
ditional approach where inter-slice isolation is not enforced,
our approach increases the percentage of RBs that can be
used to perform coordination-based transmissions. A major
question, however, is whether or not the enforcement strategies
presented in this paper can actually bring performance gains in
terms of throughput and interference mitigation when applied
to real-world 5G networks. To answer such an interesting
question, at each simulation run we have generated a random
network topology with B BSs and M independent user sets
each consisting of 10 cellular users randomly deployed within
the simulated area. In other words, we assume that each
MVNO requests a RAN slice to serve 10 cellular users.
Channel gain coefficients between BSs and cellular users are
computed through the well-established free-space path loss
model.

Recall that the slicing profile L is randomly generated at
each simulation run. For each L we allocate RBs to MVNOs
by running different RAN slicing enforcement algorithms.
Then, for each MVNO we compute the optimal downlink
transmission policy that maximizes the rate of the system [54]
by determining (i) which user should be scheduled in each
RB, (ii) how much power to allocate to each transmission,
and (iii) whether or not a user should be served by multiple
neighbouring BSs through CoMP transmissions.

Our results are reported in Fig. 11, where we show the aver-
age SINR for different RAN slicing enforcement algorithms
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Fig. 10. Percentage of linked RBs as a function of M and different RAN slicing enforcement policies (B = 5).

as a function of the number of MVNOs and BSs. In general,
Fig. 11 shows that our approach always improves the SINR
of cellular users by providing gains up to 2 times and an
effective SINR gain up to 10 dB. Despite the optimality ratio
decreases when large values of B and M are considered,
Fig. 11 shows that cellular users still experience higher SINR
values if compared to traditional RAN slicing algorithms
where isolation across slices is not enforced. This results
show the effectiveness of our approach even in the case of
sub-optimal RAN slice enforcement policies.

D. Bandwidth and Time-Scale Analysis
We now investigate the impact of different bandwidth con-

figurations and time-scale requirements. Specifically, we con-
sider the case of a resource grid with a 20 MHz bandwidth,
NRB = 100 RBs and T = 5s. In this configuration, we let
M = 5 MVNOs change the slicing profile L at a slower
frequency if compared to the case considered in previous
sections. Since we have already demonstrated that complex-
ity reduction techniques presented in Section VI effectively
reduce computation times, we will present results obtained by
applying both sparsity and RB aggregation techniques to our
approach. Also, given that the considered scenario presents
a very high number of RBs, we investigate the impact of
slice requests profiles on the complexity of the problem.
Specifically, we consider 5 different cases where MVNOs are
allowed to submit requests where the number of requested
RBs must be a multiple of ξ ∈ {2, 5, 10, 20, 50}, which
is equivalent to submitting requests with an instantaneous
minimum bandwidth equal to 0.4, 1, 2, 4, 10 MHz for each
subframe. We refer to ξ as the minimum RB request block size.
Indeed, the minimum request requirement does not hold if the
MVNO is not willing to request any RB on a particular BS.

In Fig. 12, we show the convergence time and
optimality-gap of our algorithms for different values of ξ.
As expected, large values of ξ facilitate RB aggregation (see
Section VI-B) and considerably reduce the computation time
of all solutions, especially for RSEP-QP which experiences a
reduction in the computation time by a factor 1000× when
moving from ξ = 2 to ξ = 50. Similar considerations apply to
the optimality-gap as well which decreases as the value of ξ
decreases as well. These results show that aggregation of RBs
not only reduces the complexity of the problem, but it also
results in more efficient solutions.

VIII. EXPERIMENTAL EVALUATION

The objective of this section is to experimentally demon-
strate that the benefits of our approach are not restricted to

Fig. 11. Average SINR achieved by the proposed algorithms as a function
of M considering different number B of BSs.

Fig. 12. Convergence time (s) and optimality-gap of our algorithms as a
function of the minimum RB request block size ξ.

simulation scenarios only, but they also apply to real cellular
network deployments. For this reason, in Sections VIII-A
and VIII-B we first describe the testbed and the scenario
considered in our experiments. Then, we discuss the obtained
results in Section VIII-C.

A. Experimental Setup

To demonstrate the superior performance of our algorithms,
we have instantiated a standard-compliant LTE cellular net-
work on the Arena testbed [55] located in the main cam-
pus of Northeastern University, Boston, MA, USA. Arena is
an experimental software-defined radio (SDR) testbed whose
goal is to facilitate prototyping and performance evaluation
of algorithms and protocols for sub-6GHz applications in
a real-world wireless environment. Arena consists of Ettus
Research USRPs N210 and X310 SDRs whose antennas are
connected via 100 feet long SMA cables and are hanging from
the ceiling of a 2240 square feet office space. Antennas have a
3 dBi gain while USRPs have a 30 dB maximum transmission
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Fig. 13. Experimental setup.

gain and are controlled via software by GPU-enabled high-
computational power Dell EMC PowerEdge R340 servers.

To deploy a standard-compliant LTE network, we lever-
aged the srsLTE [56] open-source software which offer
LTE-compliant base station (eNB) and UE protocol stack
implementations, as well as an Evolved Packet Core appli-
cation. In this section we discuss implementation details and
report results obtained through our srsLTE-based prototype.
However, we would like to remark that our solutions can be
seamlessly ported with minimal changes to other open-source
software platforms such as OpenAirInterface (OAI) [57].

We deployed two standard-compliant eNBs on Arena
USRPs X310 serving 6 COTS UEs (Xiaomi Redmi Go). The
deployed LTE network is shown in Fig. 13, where UExy is
served by eNBx, with x ∈ {1, 2}, y ∈ {1, 2, 3}.

We deploy the LTE network in Frequency Division
Duplex (FDD) mode in the LTE Band 7 with a bandwidth
equal to 10MHz and 50 RBs. As shown in Fig. 13, we consider
2 MVNOs serving UE11, UE13, UE23 (slice 1) and UE12,
UE21, UE22 (slice 2), respectively. The two eNBs are deployed
approximately 6 meters apart and their coverage areas partially
overlap. For example, UE13 and UE23—which are both asso-
ciated to slice 1—experience severe interference due to the
proximity to adjacent eNBs.

This setup is particularly well-suited to showcase the per-
formance gains brought by interference reduction of our
approach.

B. Integrating RAN Slicing in srsLTE
Although srsLTE provides functionalities to deploy an LTE

cellular network with few lines of code only, it does not
directly provide RAN slicing functionalities required by our
algorithms. For this reason, we have extended srsLTE function-
alities by integrating RAN slicing mechanisms at each eNB.
An overview of the extended framework is shown in Fig. 14.
Blocks highlighted in green indicate the extended software
components to integrate RAN slicing functionalities within the
srsLTE framework.

In each experiment, the IP receives RAN slice requests gen-
erated by a set of MVNOs. Each RAN slice request specifies
which eNBs should be included in the slice, and the number
of RBs that should be assigned to the slice on each eNB.
Upon reception of these requests, the IP executes one of the
RAN slicing enforcement algorithms proposed in this article to
assign the available RBs to the requesting MVNOs such that
the number of linked RBs is maximized. The solution of the
algorithm is then converted into a set of B configuration files
(i.e., the config.txt files in Fig. 14). Each configuration
file is associated to individual eNBs and specifies which
RBs should be assigned to each slice. These files are then

Fig. 14. Prototype overview and integration with srsLTE. Green blocks
indicate the extended software components.

dispatched to the corresponding eNB and processed by a config
file parser module. RAN slicing enforcement information is
then fed to a RAN slicing module that instantiates RAN slices
and exclusively assigns RBs to each of them according to the
configuration specified in the config.txt file. Finally, RBs
assigned to each RAN slice are used by individual MVNOs
to schedule UE downlink transmissions performed by Arena
USRPs. This is achieved by assigning each UE to one slice
only. This association is implemented by assigning a unique
identifier (i.e., an integer number) to each slice and associating
the unique international mobile subscriber identity (IMSI) of
each UE to a slice identifier. This way, the UE scheduler
module can schedule UEs belonging to a specific slice on
RBs that have been assigned to that slice only.

C. Experimental Results

We consider the case where two MVNOs lease eNB
resources (i.e., RBs) to instantiate RAN slices. Our exper-
iments aim at evaluating two critical performance parame-
ters, i.e., network throughput and SINR experienced by UEs.
To showcase the effectiveness of our algorithms, we compared
the optimal RSEP-QP method presented in Section V-A, with
the traditional one (i.e., w/o isolation) in which RAN slices are
instantiated without leveraging network topology information
and without enforcing slice isolation.

We ran 10 experiments on the testbed presented in
Section VIII-A. At each experiment run we generate a random
slicing profile L in MATLAB. To compensate for inaccurate
synchronization of our experimental equipment, slicing profile
L are generated with K = 9, which we have experienced to be
a large enough value to ensure that most RBs are synchronized
across adjacent BSs.

Mobile users perform a 2-minute long speed-test (which
ensures that transmission buffers are constantly backlogged
with downlink packets and slices are always active) and report
both throughput and SINR measurements.

To provide a fair comparison between different approaches,
for each L we compute RAN slicing enforcement policies
by using the method presented in this paper (i.e., RSEP-
QP) and traditional ones (i.e., w/o isolation). Also, to avoid
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Fig. 15. Experimental throughput comparison.

Fig. 16. Experimental SINR analysis.

time-varying performance degradation introduced by Internet
connectivity, which would result in an unfair comparison
between the two methods, the speed-test server is locally
hosted on the Arena testbed.

The average network throughput over the 10 experiments is
reported in Fig. 15. Our results clearly show that our approach
(i.e., RSEP-QP) outperforms traditional interference-agnostic
approaches and increases throughput by approximately 27%
(approximately 5Mbps gain) with peak throughput gains up
to 7.5Mbps.

In Fig. 16 we analyze SINR measurements reported by UEs
under the two considered methods (Fig. 16a). The Cumulative
Distribution Function (CDF) of the SINR shown in Fig. 16b
clearly demonstrates that traditional approaches are subject
to poor SINR performance due to high interference across
heterogeneous RAN slices. Our approach, instead, effectively
reduces such interference and improves the SINR experienced
by UEs. This can be easily noticed in Fig. 16c where we show
the ratio of users reporting Low (SINR ≤ 5dB), Medium
(5dB < SINR ≤ 17dB) and High (SINR > 17dB) SINR.
Fig. 16c shows that our approach results in a larger portion of
UEs reporting higher SINR if compared to traditional approach
which, instead, shows higher percentage of UEs reporting low
and medium SINR levels.

IX. CONCLUSION

In this article, we have investigated the challenging and
timely problem of radio access network (RAN) slicing
enforcement in 5G networks. First, we have formulated the
resource slicing enforcement problem (RSEP) and shown its
NP-hardness. Then, we have proposed three approximation
and heuristic algorithms that render the problem tractable
and scalable as the problem increases in complexity. Finally,
we have evaluated the algorithms through simulations, and
demonstrated their effectiveness through experimental analysis
on a testbed composed by 2 LTE base stations and 6 cellular
users. Results conclude that our algorithms are scalable and
provide near-optimal performance. Moreover, our solutions

Fig. 17. An example of the reshaping algorithm in Appendix A.

effectively enforce RAN slicing policies by satisfying MVNOs
requirements, reducing inter-MVNO interference, and pro-
viding throughput and SINR gains up to 27% and 100%,
respectively.

APPENDIX

A. Aggregation Map From X to X̃
Let us consider the reshaped RB gridR ∈ R

NRBT×1 and let
us consider the RB allocation matrix (RBAM) σ = (σb)b∈B
where σb(x∗) = (σb,τ )τ∈R : X → R. Similarly to what done
in Section V-D, b and τ will represent rows and columns of
σ, respectively. Let Mb,τ (x∗) be the MVNO that RB τ has
been assigned to, i.e., the MVNO m such that xm,b,τ = 1.
Accordingly, we set σb,τ = Mb,τ (x∗).

Fig. 17 depicts an example that will help us explain how
we can map any optimal solution x∗ ∈ X to the RSEP to
an aggregated solution x̃∗ ∈ X̃ . Let us represent in Step A
the RBAM corresponding to the optimal solution of the RSEP
when B = 4 interfering BSs are deployed and M = 5 tenants
request a different amount of RBs on each BS. Furthermore,
we consider NRB = 2 and T = 4. We consider the slicing
profile L in Fig. 17 where GCD is K = 2. Recall that two
columns τ1 and τ2 are said to be coherently swapped when
all their corresponding entries σb,τ1 are replaced with those
of σb,τ2 and vice versa. Similarly, two columns are partially
swapped when only a portion of entries is replaced among two
columns. Two entries σb1,τ and σb2,τ are linked if Mb1,τ (x) =
Mb2,τ (x) and yb1,b2 = 1. Finally, we say that K adjacent
entries σb,τ1 , . . . , σb,τK are paired if Mb,τ1(x) = Mb,τ2(x) =
· · · = Mb,τM (x), they are said to be unpaired otherwise.

1 Our mapping algorithm works as follows. First, if any K
columns of σ are identical (see Step A, where columns 2 and
4 are identical), we remove them from σ (see Step B) and
add them to the aggregated RBAM (see the first column in
the bottom-left RAMB). Then, we take the following steps:

1) We select the row b0 in σ with the smallest number of
distinct MVNOs and we move it to the lowest row (see
Steps A and B where we swap rows 3 and 4);

2) We update σ by ordering row b0 in MVNO identifier
order (see Steps B and C, where to order row b0,
we coherently swap column 3 with 5, and then 4 with 5).
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This operation (i) creates ordered groups of K entries
(see Step C); and (ii) preserves the optimality of the
solution as all columns are coherently swapped;

3) If all entries in the RBAM have been paired, we stop
the algorithm;

4) If any K columns of σ are identical, we remove them
from σ (as done in Steps H and J) and we include them
to the aggregated RBAM (see bottom-left RBAM);

5) We select the row bn (among the rows above b0) that
shares the highest number of links with b0 (row 3 in
Step D and row 1 in Step E), and we move it above b0

(row 3 in Step D is already above b0, while in Step E
we need to swap rows 1 and 2);

6) If all the entries in bn are paired, we go to 7) (such as in
Steps D and F); otherwise, we find K unpaired entries
and we generate a partial swap of bn and the upper rows
(Steps G and I) such that i) the number of links remains
the same1; and ii) the K entries are paired. Since we are
forcing the number of links to be the same, any partial
swap generated in this step maintains the optimality of
the solution. Although the partial swap might change the
number of links per tenant, it does not changes the total
number of links. Accordingly, the solution generated by
the partial swap and the initial optimal solution are
equivalent and share the same number of links.;

7) We set b0 = bn and go to 3).
Upon termination, the algorithm creates an aggregated

RBAM (bottom-left RBAM) that is then transformed into a
reshaped one (bottom-right RBAM) by replicating the columns
of the aggregated RBAM exactly K − 1 times. As shown
in Fig. 17, all the entries in the reshaped RBAM σ are
paired and the total number of links is equal to the original
optimal RBAM (bottom-center RBAM). It is easy to note that
both RBAMs generate the same number of linked RBs, i.e.,
the aggregation mapping generates an aggregated RBAM that
is optimal for the RSEP. In fact, both the original and the
reshaped RBAMs have 20 linked RBs.
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