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Abstract—Radio access network (RAN) slicing is an effective
methodology to dynamically allocate networking resources in 5G
networks. One of the main challenges of RAN slicing is that it
is provably an NP-Hard problem. For this reason, we design
near-optimal low-complexity distributed RAN slicing algorithms.
First, we model the slicing problem as a congestion game, and
demonstrate that such game admits a unique Nash equilibrium
(NE). Then, we evaluate the Price of Anarchy (PoA) of the NE,
i.e., the efficiency of the NE as compared with the social opti-
mum, and demonstrate that the PoA is upper-bounded by 3/2.
Next, we propose two fully-distributed algorithms that provably
converge to the unique NE without revealing privacy-sensitive
parameters from the slice tenants. Moreover, we introduce an
adaptive pricing mechanism of the wireless resources to improve
the network owner’s profit. We evaluate the performance of
our algorithms through simulations and an experimental testbed
deployed on the Amazon EC2 cloud, both based on a real-world
dataset of base stations from the OpenCellID project. Results
conclude that our algorithms converge to the NE rapidly and
achieve near-optimal performance, while our pricing mechanism
effectively improves the profit of the network owner.

Index Terms—Network slicing, 5G, congestion games, game
theory, distributed algorithms.

I. INTRODUCTION

HANKS to the ubiquitousness of modern smartphones

and the rise of the Internet of Things (IoT), the number of
mobile devices has seen an unprecedented expansion over the
last few years. The latest report by Ericsson Mobility forecasts
that the number of 5G subscriptions will exceed half a billion
by the end of 2022, including more than 1.5 billion IoT devices
equipped with cellular connections [1]. This massive increase
in the number of connected devices will necessarily result in a
staggering growth in cellular data traffic. For this reason, 5G
cellular networks are expected to meet stringent requirements
on ubiquitous connectivity, extremely low latency, and very
high-rate data transfer [2]-[4].
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What 5G systems are going to be has yet to be determined.
However, there is wide consensus that 5G systems will single-
handedly cater to a plethora of different services, such as
automotive, mobile broadband, and tactile Internet, just to
name a few. Each service will have its own networking
requirements, which will ultimately require the network to
be polymorphic and seamlessly adapt to different constraints.
To address this challenging problem, the notion of network
slicing [5]-[9] has been recently proposed, where the physical
and computational resources of the network are seen as a
unique “object” that can be “sliced” and ‘“served” accord-
ing to an entity’s current needs. In this way, heterogeneous
requirements can be served by the same infrastructure in
a cost-effective manner, as different network slice instances
can be orchestrated and configured according to the specific
requirements of the slice tenants.

Network slicing does not just provide better network per-
formance, but it also enables realistic and profitable business
models in the mobile network ecosystem. In this paper,
we consider the problem of network slicing in the context of
radio access networks (RANs), where telco operators (TOs)
provide physical network resources to mobile virtual network
operators (MVNOs), who periodically rent slices to provide
cellular network access to mobile users (MUs). While a similar
model is currently being successfully applied by Amazon
Web Services or Microsoft Azure in the context of cloud
services, slicing RAN resources is an intrinsically different
problem, since (i) spectrum is a scarce resource for which
over-provisioning is not possible; (ii) the network capacity is
dynamic and heavily depends on the location of the MUs,
among other factors; and (iii) the agreements with MVNOs
usually impose stringent requirements on the Quality of Expe-
rience (QoE) perceived by the MUs. These issues motivate our
paper.

The main issue in designing RAN slicing algorithms is
that the most realistic problem formulations are provably NP-
hard [10]. For this reason, most of existing work has focused
only on the architectural aspects of network slicing [11], [12],
with a limited focus on algorithmic aspects. Only very recently
have a number of centralized algorithms for RAN slicing
been proposed [10], [13]. Although these algorithms achieve
optimality, they do not scale with the number of MVNOs and
RAN resources. This issue calls for the design and analysis
of near-optimal, lower-complexity algorithms for RAN slicing.
Another crucial aspect is that optimality is often achieved to
the detriment of privacy. Specifically, it is assumed that the TO
is provided with complete information regarding the MVNOs’
system parameters and preferences, for example, monetary
budget, number and location of served MUs, business strate-
gies, and so on. Instead, in realistic scenarios MVNQOs may
be reluctant to disclose such sensitive information to the TOs.
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Finally, centralized solutions do not consider the competitive
and selfish behavior of modern MVNOs, who will dynamically
adopt different strategies to maximize their own utility without
considering the broader needs of the network as a whole.
This implies that distributed algorithms are in general more
desirable than centralized solutions, as they are more likely to
be adopted by MVNOs in real-world RAN slicing scenarios.

In this paper, we investigate the challenging and novel prob-
lem of designing privacy-preserving, low-complexity, near-
optimal distributed algorithms for RAN network slicing, where
the MVNOs selfishly compete with each other to acquire
slices from the TOs while minimizing their cost. First, we first
mathematically formulate this problem; then, we rely on the
game-theoretical framework of congestion games [14]-[16]
to effectively model and analyze the competition among
MVNOs. Next, we demonstrate the existence and uniqueness
of the Nash equilibrium (NE) associated to the game, and
prove that its Price of Anarchy (PoA), i.e., the efficiency of
the NE as compared to the social optimum, is limited to
%. We formulate two distributed algorithms that preserve the
privacy of the MVNOs and provably converge to the unique
NE. Moreover, we propose a pricing algorithm based on a
stochastic iterative mechanism that allows the TO to optimize
its profit by adapting pricing policies to the current load on
the resources being sliced. Finally, we extensively evaluate
the performance of our algorithms through simulations and a
practical testbed implemented on the Amazon EC2 cloud [17],
both based on a real-world dataset of base stations (BSs)
from the OpenCellID project [18]. Results demonstrate the
effectiveness of the proposed approach, as our algorithms
converge to the NE rapidly while achieving near-optimal
performance.

II. NETWORK SCENARIO AND PROBLEM OVERVIEW

In this paper, we consider the network scenario depicted
in Figure 1, which is composed by a core network (CN)
and a radio access network (RAN). The CN is connected to
the Internet and is in charge of routing uplink and down-
link traffic. Furthermore, the RAN is composed of multiple
heterogeneous remote radio heads (RRHs). We assume that
both the CN and the RAN are owned and managed by a
single TO. However, our model can also be applied to the
more general case of multiple infrastructure owners. Given
that RRHs are geographically located at different areas of
the network, the RAN can be divided into multiple RAN
clusters, which group together RRHs that are close to each
other. In the considered scenario, the TO dynamically leases
the network infrastructure to multiple MVNOs, who do not
own any infrastructure and build virtual RANs to provide
MUs with networking capabilities [6]. Since RAN clusters
are geographically isolated and autonomous, slicing policies
are enforced on each RAN cluster individually.

We consider the problem of generating autonomous virtual
RANS on top of the resources provided by the physical RAN
owned by the TO. A virtual RAN is thus referred to as a
network slice, since it represents a virtual “portion” of the
physical RAN. Resources that may be assigned in each slice
include available spectrum, antennas, computing resources,
and so on. In this scenario, it is realistic to assume the MVNOs
will need to provide the TO with some sort of payment based
on the number and type of resources allocated to their slices.
Thus, the slicing problem reduces to finding an allocation
policy for each MVNO, to minimize the cost associated to
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Fig. 1. The considered 5G network scenario.

its slice while ensuring that a predetermined number of MUs
can be served. Within each slice, MVNOs are free to assign
resources to the MUs according to their internal policies.

This problem can be approached in two different ways.
In the first approach, which we call centralized, the TO
collects information with respect to the MUs that each MVNO
would like to serve (e.g., position and number of MUs, QoS
requirements, etc...), referred to as MVNO user load. Then,
the TO computes the slices by solving an optimization problem
that takes the MVNO user loads into account. Although
simple in nature, this approach suffers from a number of
disadvantages. First, it requires the MVNOs to disclose both
business models and information related to their users to the
TO, which clearly raises privacy and marketing concerns as
the MVNOs are usually interested in hiding such information
from external entities. Second, since centralized approaches
find the global optimum by mathematical optimization [10],
they require significant computational resources as the network
slicing problem becomes intractable as the number of MVNOs
and resources increases [13]. Thus, since the MVNO user load
is dynamic in nature and business strategies might change
over time, the centralized approach may fail to provide slices
before their user load changes again and a different slice is
thus needed. In this paper, we take a different approach and
tackle the problem in a distributed way. Specifically, we design
distributed slicing algorithms such that each MVNO computes
its slice locally without revealing relevant information, e.g.,
business model and position of served MUs, to the TO or other
MVNOs.

Although such distributed solution might be sub-optimal,
we show that it is low-complexity (i.e., scalable) and approx-
imates the optimum solution by a factor of %, a very small
number. We use the framework of congestion games [14]-[16]
to ensure that the MVNOs, although selfish and competing
with each other, will nevertheless reach a solution (i.e., Nash
equilibrium) that will satisfy each MVNO. In order to increase
the TO’s profit, we propose an adaptive resource pricing
algorithm.

III. RAN SLICING PROBLEM FORMULATION

Let us define M and H as the sets of the MVNOs and
RAN clusters, respectively. We assume that a set Ry of R
heterogeneous RRHs are deployed for each cluster h € H, and
that RRHs can be classified into L classes according to their
performance and resource availability (e.g., macro, micro, pico
and femto cells). Accordingly, the set of RRHs in RAN cluster
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his Ry = (RS),R?, . ,RgL)). For each RRH r € Ry,
we also assume that the TO fixes a leasing price, here denoted
as pr.

It is reasonable to assume that statistical information on
the expected number of MUs and their position in each
cluster may be obtained by exploiting real-time monitoring
of the RAN [19]. Given such statistics are time-varying and
depend on MUs mobility patterns, we assume that MVNOs
change their slicing policy on regular basis. For these reasons,
we assume time is discretized into slots, where ¢ = 1,2,...
represents the slot index, and the number of MUs and their
position in each cluster is assumed to vary at each slot.

Let A, be the maximum amount of resources of RRH r
available at each slot,) and let N, denote the number of
MUs that can be served by RRH r without any degradation
in QoE. In other words, if the number of MUs served by
RRH r is lower than NNV, then all MUs connected to r enjoy
high-quality communication. On the other hand, MUs would
experience congestion and/or poor performance if their number
is equal or greater than N,.

The N, parameter is specific to a given RRH and depends
on A,, the desired minimum QoE level, the position of MUs
and their number at a given slot. As an example, it is easy
to observe that communication between distant RRHs and
MUs is expected to result in more collisions and errors, which
necessarily increases the number of re-transmissions and the
transmission power. In general, the value of N, can be either
fixed by hardware [22] or estimated by the TO by analyzing
statistical information on the position, number and distribution
of MUs collected by using historical data, anticipatory and
prediction models [23]-[26]. The above discussion shows that
i) the value of N, depends on a variety of heterogeneous and
scenario-specific parameters, and ii) there is no unique way of
characterizing such variable. For this reason, in this paper we
keep a general approach at the problem and do not make any
limiting assumption on the value of N,. Instead, we consider
it as a scenario-specific parameter whose value is fixed and
disclosed by the TO to the MVNOs according to a particular
network configuration.

However, since N, is expected to considerably impact
the RAN slicing problem, in Section VIII we describe a
methodology to obtain a worst-case estimation of the value of
N, that accounts for QoE requirements, resource availability,
position and number of MUs. Our derivation is not intended
to be precise and accurate, but it is only used to investigate the
impact of IV, on the achievable performance of the system.

For the sake of simplicity, henceforth we will focus on a
given cluster h € H, and we will omit both ¢ and the slot
index t. We summarize the most relevant system parameters
in Table L.

A. Definition of Slicing Policy

We define as slicing policy a function determining how each
MVNO allocates its MUs to the available RRHs in a given
RAN cluster. More formally, a slicing policy for an MVNO
m is an allocation vector €, = (§mr)rer € Sm. Where Sy,

'In our model, we do not assume any specific model for A, since it models
a number of factors including computational, storage and communication
resources. For example, A, might represent the number of OFDM symbols
available in OFDM-based network architectures such as LTE [20], as well as
spectrum or antennas [21].

TABLE I
SUMMARY OF NOTATION

Variable Description
M, R, H | Sets of MVNOs, RRHs and RAN Clusters
M, R Number of MVNOs and RRHs
R Set of the L classes of RRHs in cluster 2
N, Num. of MUs served by RRH r € R with guaranteed QoE
Pr Leasing price for RRH r € R
r=12... Slicing slot index
0 Expected number of MUs in cluster 7 for MVNOs m at slot ¢
Em,r (1) Number of MUs of MVNO m served through RRH r
Tn(,,) Set of RRHs in R selected by MVNO m
0, (£) Set of MVNOs that have selected RRH r under policy &
&,,(1) Allocation vector for MVNO m

&(1) Allocation policy at slot 7
Ay Amount of resources available at RRH r

O, r(€) Available resources allocated to MVNO m under allocation policy &
¢, (€) Congestion level on RRH r € R under allocation policy &
P

T, Weighing parameter for MVNO m
A )

Congestion cost for MVNO m under allocation policy &

cﬁ &,,) Monetary costs for MVNO m under allocation policy &
cm (€, €_,,) | Cost function for MVNO m under allocation policy &
G RAN slicing congestion game

D(E) Potential function for the game G under allocation policy &

§OPT, §NE Optimal and Nash Equilibrium allocation policies

CNE " COPT "Social welfares computed under the NE and optimal allocation policies
Yn Step-size parameter used in the learning procedure in (21)
I1(z) Profit ot the TO at slot ¢

is a (R — 1)—simplex defined as

Sm: (gm,r)reR : Z gm,r:nm and gm,rzoa VreR

reR
(1)

and &, , represents the number of MUs in the cluster that the
MVNO m expects to serve through RRH 7.

Ultimately, the TO generates the global allocation policy
& = (&,,)mem by considering all the allocation vectors
for each cluster. For any given allocation policy &, the TO
generates a corresponding network slice over the available
RRHs. Specifically, the amount of resources at RRH r» € R
provided to MVYNO m under allocation policy £ is:

Om,r = S(Arvg)a (2)

where A, is the maximum amount of resources of RRH r,
and s(-) is the slicing function. For example, a simple (yet
effective), slicing function can be provided by the proportional
allocation function [27]

Em,r

Omyr = =+~
ZleM flﬂ“

Since A, is a positive and finite real number, the relationship
> mem Omr < A, always holds for each » € R. For any

A, 3)

&, a slicing rule o, = (04,7 )mesm for each RRH r € R is
derived, and a slicing policy o = (o ,),cr is obtained. For the
sake of simplicity, we also define T,,(&,,,) as the set of RRHs
in R selected by MVNO m in its slice, and O,(£) as the set
of MVNOs which have selected RRH r under slicing policy
&. More formally, '), (€,,) = {r e R : &nr > 0,6, € &,,}
and ©,(§) ={me M : &, > 0,8, € €}

IV. RAN SLICING AS A CONGESTION GAME

When designing optimum slicing policies, MVNOs must
also take into account aspects such as (i) the cost incurred
when leasing RRHs; and (ii) QoS-related metrics such as
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RRH Class R()

Fig. 2. Example of the considered CG on a given cluster with |[M| = 2
MVNOs and |R| = 5 heterogeneous RRHs.

(a) the distance of those RRHs from the MUs, (b) the
congestion level on each RRH, and (c) the availability of
resources at each RRH. Since MVNOs are assumed as selfish
and interested in reaching their own optimum slicing policy,
and given the RAN infrastructure is shared among MVNOs,
slicing policies belonging to the same cluster will necessarily
affect each other.

For these reasons, congestion games (CGs) [14]-[16]
become the most natural choice to design and analyze efficient
and distributed RAN slicing algorithms. Indeed, by using the
theory of CGs, we are able to (i) demonstrate the existence
and uniqueness of the Nash equilibrium (NE) associated to
the CG; (ii) prove that its Price of Anarchy (PoA) is limited
to %; and (iii) formulate two privacy-preserving distributed
algorithms that provably converge to the unique NE.

We now formulate the RAN slicing problem as a congestion
game and we define the slicing cost function used by MVNOs
to select their optimum policy.

A. Congestion Game Problem Formulation

Let us define and consider the following weighted conges-
tion game (CG)

g = (M, (nm)mEMa R7 Sa (Cm)meM) ) (4)

where M is the player set (i.e., the set of MVNOs), n,, are
the weights of the congestion game and represent the expected
number of MUS in the cluster for MVNO m, R is the resource
set, S = [1,,c a1 Sm.c is the strategy space, and (cy)men is
the cost function set, where c,, will be defined in Section I'V-
B. A strategy for MVNO m consists in the selection of the
allocation vector &,,,. Hence, a strategy profile is represented
by € = (51)527 s 551\1)’

First, note that the set of MVNOs is finite, and each MVNO
is an atomic decision maker that aims at minimizing the cost
associated to its slicing policies. Since the cost experienced by
each MVNO depends on the RRHs they select, the congestion
game G has to be weighted and to have player-specific cost
Jfunctions. Furthermore, a slicing policy is derived by allocating
different number &, , of MUs to multiple RRHs in the cluster,
implying that G has to be continuous and with splittable
flows [28]. To summarize, the slicing problem can be modeled
as an atomic weighted CG with splittable flows on R parallel
links. Figure 2 shows a CG with two MVNOs. In this example,
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five RRHs are divided into two distinct RRH classes R(!) and
R Finally, &m,r represents the number of MUs allocated to
RRHs » by MVNO m.

B. Definition of Slicing Cost Function

RRHs are heterogeneous in terms of type, position and
available resources (i.e., spectrum and computational power).
Thus, when selecting an RRH r, an MVNO m will incur in
a cost that depends on the following two aspects:

1) RRH Congestion. RRHs serving an excessive amount of
MUs are expected to provide low QoS to their MUs.
Instead, RRHs that serve fewer MUs might provide
their served MUs with better quality communication.
Therefore the RRH congestion should be taken into
account. The congestion level on RRH r under policy &
can be measured as follows:

¢r(£) = NL Z gm,r- (5)

r meo,.(§)

where N, has been defined in Section VIII-A and
depends on several RRH-specific parameters such as the
resource availability A, at RRH r and the quality of the
wireless channel. It is worth noting that the congestion
cost not only depends on the allocation policy &,
of MVNO m, but it also depends on other MVNOs’
allocation policies.

2) Deployment Cost. A second cost term is the deployment
cost which MVNO m pays to the TO to add RRH r to
its slice. Such cost depends on the price p, associated
to RRH 7. It models the revenue that the TO expects to
receive when renting resources to MVNOs.

The above two aspects can be considered by defining the
following resource- and MVNO-specific cost function

Cm (&) = ¢r(§) + 7l pr (6)

where the weight 7/ is a resource- and MVNO-specific

parameter that weighs the two terms in (6). wﬁ can be used
to model a wide variety of network scenarios. For example,
77 = 0 can be used to model a MVNO m that cares
about congestion only irrespective of the incurred deployment
monetary cost.

The total cost incurred by MVNO m under allocation policy
& can be expressed as

cm(&m &) = Z Em,r Cmﬂ“(gmv&fm) )
rel,, (&)
= Cgl (gm’ é—/n’]/) + CZVDL (é/n’]/) (8)

where

cfn, (émv €—m) = Z gm,C,T Or (émv €—m) C)

LS (gm)

Z gm,r DPr

rel'm(€,,)

(10)

In the expressions above, (9) measures the overall conges-
tion level experienced by all MUs served by the MVNO m
under the slicing policy & = (§,,,,&_,,,); and (10) represents
the total monetary deployment cost of the requested slice.
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V. NASH EQUILIBRIUM ANALYSIS

In the previous section, we showed how the slicing problem
can be modeled as a congestion game G. In this section,
we solve G by computing the Nash Equilibrium (NE) of the
game, defined as follows:

Definition 1: A strategy profile & = (£€,,)mem € SisaNE
for the congestion game G if, forall m € M, (¢, €_, )€ S
it holds that ¢,,(&,,,€_,.) < cm(&,, € ), Where ¢, (+) is
the cost function defined in (7).

Thus, a NE is a strategy profile such that no MVNO can
further reduce its own cost function by unilaterally switching
to another strategy.

In the following, we will focus our efforts to address the
next four questions:

1) Does game G admit one or more NEs?

2) Is the NE efficient with respect to the optimal solution?

3) Can we design an efficient distributed algorithm that will
help the MVNOs reach the NE without interacting with
each other?

Question 1) will be answered in Section V-A, while ques-
tions 2) and 3) will be answered in Sections V-B and VI,
respectively.

A. Existence and Uniqueness of the NE

We first introduce the concept of exact potential games
in Definition 2, and then we show that game G is an exact
potential game in Proposition 3.

Definition 2: The game G is an exact potential game if there
exists a function ® : § — R such that ¢, (§,,,€_,,) —
Cm(é;rw&—vu) = (b(émmg—m,) - (b(é;nmg—m) for aH m &
M, ¢,..¢ € S, and &, € S_,,, where S_,,, =

ke M, k#m Sk

For each MVNO m € M and RRH r € R, let 1, , be
defined as follows:

(1)

Proposition 3 (Potential Function and NE Uniqueness):
The congestion game G is an exact potential game with
potential function

EEDDY

reR memM

P
Nm,r = Ty Pr

1
(Ff?n,r + nm,rfm,r

1
+F Z gnl,,rgkﬂ“) . (12)

" k<m

Furthermore, the congestion game G admits a unique NE.
For a detailed proof see Appendix A. Instead, for a physical
interpretation of the potential function (12) see Appendix B.
It is worth mentioning that the potential function in (12)
depends on the player and resource-specific parameters 7, ..
Accordingly, it differs from potential functions for atomic
congestion games derived in other papers such as [29] that
considers resource-specific cost functions only. We would also
like to strengthen the fact that having player and resource-
specific cost functions not only makes our model general, but it
also makes it possible to model all those cases where MVNOs
can differentiate among the available RRHs according to the
presence of users in a given area, their number and required

QoS.

B. The Price of Anarchy (PoA)

In this section, we investigate the efficiency of the unique
NE of the CG. Specifically, we will demonstrate that the Price
of Anarchy (PoA) of the game is a small number. In particular,
the PoA is a metric which measures the efficiency of the NE
w.r.t. a social optimum solution, where the latter is computed
as follows:

OPT
3

Cm (5 )

meM

13)

= argmin
ges

In our considered case, let SNE be the unique NE of G,
the PoA can be expressed as

ZmEM C’m(gNE) o CNE
EmeM cﬂ]/(éOPT) - COPT

Since each MVNO aims at minimizing its cost function,
it holds that PoA > 1. Specifically, PoA = 1 ensures the
global optimality of the NE, instead, PoA >> 1 indicate poor
efficiency of the NE. Even though many congestion games
have been shown to have unbounded PoA, i.e., PoA = +o0,
in this work we show that the PoA is upper-bounded by 3/2.
Specifically, in Proposition 4 we first derive a general result on
the PoA, then in Theorem 5 we derive a closed-form upper-
bound which only depends on the number M of MVNOs.

In line with [30], let 3 be defined as follows

PoA = 14

[ = sup sup
reREVES

;j\fm,r(cm,r (é) —Um,r (5))+Vm,r ('Um,r (5) —Cm,r (V))
Z gm,rcm7r(£)

meM

5)

where v, , is the first-order partial derivative of &, ,Cp,r
in (6), and is defined as

Umm(é) = Cmm(&) + €;7T-

Proposition 4: The relationship CNF <
i.e., PoA < 1%

Please refer to Appendix C for the complete proof.

Theorem 5 (The PoA is upper bounded): The PoA is upper
bounded by PoA(M) = g%ié That is, the PoA increases
with the number M of MVNOs, and is upper-bounded by
PoA(+00) = 3/2.

For the detailed proof see Appendix D.

It is worth noting that the result in Theorem 5 matches
the result in [31], where it has been shown that the PoA
for atomic splittable congestion games with resource-specific
cost functions is bounded by 3425 Our proof of Theorem 5
follows the same logic behind the proof derived by Cominetti
et al. [31]. However, we would like to mention that the result
in [31] applies to the case where cost functions are resource-
specific only, i.e., ¢;» = ¢, for all m € M. In Theorem 5,
instead, we consider cost functions that account for both player
and resource-specific terms such as those in (6) and (11).
It follows that it is not possible to readily apply [31] to our
case, and though we follow the same rational behind the proof
of Cominetti et al., our proof actually extends their results to
the more general case of player and resource-specific linear
cost functions.

(16)

ﬁ COPT pholds,
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VI. DISTRIBUTED ALGORITHMS FOR
COMPUTING NASH EQUILIBRIUM

In this section, we propose two algorithms that prov-
ably converge to the unique NE of game G. Specifically,
in Section VI-.1 we develop a best response approach to
develop a mechanism that computes a NE by solving a convex
quadratic programming (QP) problem. Section VI-.2 will be
devoted to the design of a learning mechanism which provably
converges towards a NE and further reduces the complexity
of the NE computation.

1) Best Response Approach: We introduce the concept of
best response (BR) functions and then prove that algorithms
based on BR converge towards the unique NE.

The BR is a function that minimizes the cost of each player
m given the strategies &£_,,, of the other players. Specifically,
the BR for player m is defined as

£TBYIR = arg min Cm (£m,7 g—m)

m m

a7)

An iterative algorithm where each player updates its current
strategy according to (17) is called a best response dynamics
(BRD). The following Proposition 6 holds.

Proposition 6: The sequential BRD converges towards the
unique NE of G. Furthermore, the BR of each MVNO m € M
is unique.

Proof: Since G admits a potential function, from (12)
we have that any BR that minimizes the cost function of
a given player also reduces the value of the potential .
Therefore, since the potential is bounded and always non-
negative, the sequential BRD is an improvement path [32]
and will surely converge towards the unique NE. Finally, let
us note that the cost functions in (7) are strictly convex in
each player’s strategy &,,. Thus, the BR of each MVNO is
unique. [ |

Note that Proposition 6 does not guarantee that the conver-
gence towards the unique NE is attained in a finite number of
iterations. However, potential games with continuous strategy
space possess the approximate finite improvement path (A-FIP)
property, which ensures the convergence to an approximate NE
in a finite amount of iterations. Even though we cannot guar-
antee the convergence in finite time to the NE, in Section VIII
we will show that such convergence is attained in a limited
number of iterations in many practical scenarios.

Proposition 6 shows that it is possible to converge towards
the NE through iterative BRs. The BR in (17) for any MVNO
m and any adversarial strategy profile £_,,, is obtained by
solving

1. r
s 1
(i Ent+ QémQﬁm

subject to Z Enr = Nimy &, >0, (18)
rTER
where f,, = (fm.i)iem and Q = diag (Ni) are a
) e

M -dimensional row vector and a M x M diagonal matrix,
respectively. with

1
fm,,r = F [(bv" (5) - fm,r] + Nm,r (19)
and ¢, (&) and 7, being defined in (5) and (11), respectively.
An algorithmic implementation of the sequential BRD is
described in Algorithm 1.
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Algorithm 1 Sequential BRD

1: Input R;{(zr,yr), Dr, dr(€)}rer; Output The unique
NE of G;
while Convergence is not achieved do

»

3:  for each m € M do sequentially

4: ¢, = (&mr)rer < the unique solution of Prob-
lem (18);

5.  end for

6: end while

Problem (18) is a strictly convex quadratic problem with
linear constraints. Accordingly, a solution can be computed in
polynomial time (typically in O(R?), where R is the number
of available RRHs). Furthermore, if the congestion level ¢,.(£)
is publicly available, (19) guarantees that Problem (18) can
be locally solved by each MVNO without any communication
with the other MVNOs. Accordingly, Algorithm 1 computes
a NE in a distributed fashion.

2) A Low-Complexity Learning Approach: In the previous
section, we have shown that the BR of each MVNO can be
computed by solving a QP problem, which is generally solved
in polynomial time ~ O(R?). However, if the number R of
RRHs is large, to compute a solution to Problem (18) would
anyway require a non-negligible amount of time. Motivated
by this latter discussion, in this section we provide another
approach that builds on learning theory to provide a low-
complexity approach to compute the unique NE of G.

Let us introduce the following exponential learning scheme

Zm,,r[n + 1] = Zm,,v"[n] — YnUm,r (é[n])
e#m.r[n+1]

Zm k41
D per et

where ~, is the step-size, vy, , is defined in (16) and n
is the iteration indicator. Intuitively, the exponential map
in (20) generates values of the allocation variable &, , which
always lie on the boundary of the (R — 1)—simplex S,.
In Proposition 7, we show that (20) converges to the unique
NE of G.

Proposition 7: Let £ € S be the unique NE of G. If the
step-size v are chosen such that Z:g 72 < E:ﬁ Yo =
400, the exponential learning scheme in (20) always con-
verges towards £* from any interior point £(0) € S. A suitable
choice of v, is yn = n%, with 8 € (0.5,1].

Proof: Let us first derive the continuous time version
of (20) as follows:

Zm,r = Um,r (é)

eZm.r
fm,r L S—
D ker €

From the strict convexity of ¢,,, it follows that v,, , is con-
tinuously differentiable, and thus Lipschitz-continuous. Since
U, 1s always bounded, (21) admits a unique solution for
any interior point £(0).2 From (12), we have that the potential
function @ is strictly convex, which implies that ® is also
star-convex with respect to the unique NE &7, ie., (€™ +
(1 —¢€)€) < eP(&") + (1 — €)®(&) for all € € [0,1] and
& € S. Let £(0) be an interior point for S, it is possible to

21

Note that the initialization variable is 2(0) € RM X% and any z(0) with
finite elements always generates an interior point £(0).
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show [33, Th. 6] that the star-convexity of the potential with
respect to the unique NE implies that the Kullbackakl."Leibler
divergence Dy (£¥||€) is a Lyapunov function for (21) and
the unique solution of (21) also corresponds to the unique NE
&¢*. Now it suffices to apply [33, Th. 4] to show that (20)
converges to £ if 3.7 42 < 400 and 3% v, = +oo.
Finally, it is straightforward to verify that v, = tiﬁ satisfies
the above conditions. [ ]

The algorithmic implementation of (20) is described in
Algorithm 2.

Algorithm 2 Exponential Learning Scheme

I: Input R;{(xr,yr), Dr, v (€) }rer; Output The unique
NE of G;

: Set ('Um,r)rER,meM =0 (Zm,r)reR,mEM =05

: while Convergence is not achieved do

for each m € M do simultaneously

Zm,r
eZm,

Em,r — Ny >

e
Zm,r — Zm,r - ’anm,r(g);
end for

- end while

® D R

As already discussed at the end of Section VI-.1, Algo-
rithm 2 can be implemented in a distributed fashion by only
making the congestion level ¢,.(£§) on each RRH publicly
available. Furthermore, in opposition to the BR-based mecha-
nism in Section VI-.1, lines 5, 6 in Algorithm 2 have complex-
ity O(1). Since both &, , and z,, , have to be computed for
each RRH in R and MVNO in M, the overall per-iteration
computational complexity is O(RM), i.e., each iteration of
Algorithm 2 can be computed in linear time.

In Proposition 7, we have shown that the learning scheme
in (20), and thus Algorithm 2, converges to the unique NE of
the game if some conditions on the step-size -,, are satisfied.
As an example, a suitable choice of the step-size is v, = n—lg.
Though this latter setting guarantees the convergence of the
learning scheme, it might generate slow-convergent dynamics.
To overcome this issue, it has been shown in [34] that the
convergence process can be improved by using fixed values
of the step-size. Although the convergence for this latter
approach cannot be theoretically proven, using a fixed step-
size still allows Algorithm 2 to converge to the NE with high
probability. Accordingly, in this paper we will only consider
fixed step-size rules, and we refer the interested readers to [34]
for a more detailed discussion on the impact of different
step-size rules on the convergence of the exponential learning
scheme (20).

A. Extensions to Achieve Minimum QoE Levels

Even though the achievable performance of the network
certainly depend on the current slicing policy adopted by each
MVNO, it is also true that metrics such as throughput and
latency are tightly connected to scheduling policies rather than
slicing policies. As an example, although a single MVNO
receives all of the resources of a given RRH, it does not nec-
essarily imply that MUs experiencing poor channel conditions
will be able to enjoy high throughput and low latency.

The derivation of optimal scheduling policies for the
MVNOs is out of the scope of this paper, but in this section
we derive intuitive and practical approaches that tackles the

minimum QoE problem with a different perspective. Specifi-

cally, we identify the two following approaches:
Proportional-Time Slicing: this approach uses time-sharing

to divide a slicing window T;. into multiple temporal slots each

of duration
*

T, =" 7
m,r — r
ZlEM gl*r

where £° = (£}, )mem, rer is the NE computed through
Algorithms 1 or 2, and } (T, = T; for all 7 € R.
Within each temporal slot 7, ,, all the A, resources are
exclusively allocated to m. Since m owns all the available
resources in the corresponding temporal slot, it can derive
optimal scheduling policies that meet certain performance
metrics.

Barrier-Based Slicing: this approach the minimum QoE
requirement is translated into a constraint of the RAN slicing
problem, and it is then modeled as barrier-function that gener-
ates a cost when the constraint is not satisfied. Let 0,(,%”) be
the minimum amount of resources that MVNO m is willing
to obtain on RRH r to guarantee a minimum QoE level, and

let o(min) = (o—,(n”?im)meM,reR. Note that not all realizations
of o(™™) are feasible. Specifically, o (™) is unfeasible if

JIr € R such that } Jﬁ,ﬁl’f;n) > A,. Furthermore, it is
(min)

straightforward to show that the condition Zme M Tmyr >
A, is not sufficient to guarantee the existence of an allocation
policy & € S that satisfies all MVNO’ request. For this
reason, we define the QoE feasibility set as F = {o'(mm) :
Smerm Tt < A A3 € € S with 0y > ol Vm €
M, r € R}. Under the above assumptions, we consider the
perturbed cost function

€m(£) == Cm(f) + Z )\m}r(km,rd)r(g) - Emﬂ“)

reER

(22)

(23)

where A, , > 0 is the slope of the barrier and k,,, =

(min)
NTUm,,r

Fr—. When o) € F, this formulation introduces
separable linear cost functions, and it is possible to use the
same steps in Proposition 3 to derive an exact potential
function. Similarly, it can be shown that the slicing game with
barrier functions admits a unique NE that can be computed
through Algorithms 1 and 2.

Remark 1: The proportional-time slicing reserves all the
available resources to each MVNO for a limited amount of
time, and thus leaves to the MVNOs the computation of
scheduling policies that guarantee minimum QoE require-
ments. The barrier-based approach, instead, first require the
execution of a feasibility test of & (™), then needs a proper
tuning of A,, .. In general, the higher the value of A, ,,
the higher the cost experienced by MVNOs when the QoE
constraint is not met, the higher the probability that solutions
satisfying the QoE requirement are generated. However, if not
properly tuned, the \,,, parameter might negatively bias the
slicing algorithm by pushing MVNOs towards conservative
policies that aims at meeting the constraints only rather than
minimizing congestion and deployment costs. To understand
the effectiveness of this latter approach, we assess its perfor-
mance in Fig. 14.

VII. PRICING POLICIES

In the previous sections, we have shown that the developed
algorithm does not require perfect knowledge with respect
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to MVNOs’ parameters, and effectively preserves the privacy
of all MVNOs. In addition, although the proposed algorithm
has limited complexity, we have proven that close-to-optimal
solutions can be obtained with no need to run complex and
time-consuming centralized approaches at the TO side. Despite
the above important properties, another relevant issue that has
not yet been considered is related to pricing policies enforced
by the TO and their impact on the achievable profit.

It is worth noting that the set of MVNOs, the availability
of RRHs and the position and number of MUs in each
cluster vary at each slot ¢. In such a dynamic scenario, it is
straightforward to show that static pricing policies could fail to
provide high profit to the TO. On the contrary, adaptive pricing
policies are more suited to deal with time-varying systems
such as the one we are considering in this paper. For this
reason, in this section we focus on adaptive pricing policies,
and we propose a stochastic-based algorithm that exploits past
observations to adapt the pricing policy at future slots.

Let us focus on a given cluster c. Furthermore, let £*(¢) =
(& (1)) mer,rer be the unique NE of G at slot ¢, and let
n,(t) be the number of MUs served through RRH r at the
NE. We have that

ne(t) =) & lt). (24)
meM
The profit of the TO is defined as
() = Y pe(t)ns(t) = Clni (1)), (25)

rER

where C'(n,(t)) is the cost experienced by the TO to manage
n,(t) MUs at RRH 7.

The allocation variables &7, . are obtained by iteratively
executing either Algorithm 1 or Algorithm 2. Unfortunately,
there is no closed-form for those variables, which makes it
hard to predict the behavior of the MVNOs, and the actual
allocation of the MUs. Also, £, .. depends on the weighting
parameters /. Those values are not known by the TO and
might vary at each slot ¢. Therefore, an adaptive pricing policy
should be considered such that the price p, can be updated at
each slot ¢.

In this paper, we propose the following stochastic-based
approximation pricing mechanism

pr(t+1) = pr(t) + o [ne(t) = np(t = 1)],

where o > 0 is a fixed step-size used to weigh the two terms in
the stochastic procedure. The proposed pricing scheme in (26)
works as follows. If n,.(¢) > n,(t — 1), i.e., the number n, of
MUs served through RRH r has been increased in the last slot,
then the price at the next slot is increased as well, i.e., p,(t +
1) > p.(t). Otherwise, if n,(t) < n,(t — 1), the price is
decreased, and p,(t + 1) < p,(t).

Furthermore, since the achieved profit must always be non-
negative, the condition p,-(t+1) > C(n..(t)) has to be satisfied
for each RRH r. Since the stochastic procedure in (26) might
generate a price p,(t + 1) that violates the above constraint,
a minimum value p,(t 4+ 1) = C(n,(t)) is considered at each
iteration of (26).

(26)

VIII. PERFORMANCE EVALUATION

In this section, we investigate on the performance of the
proposed congestion game-based slicing mechanism through
numerical simulation and experimental results. To emulate a
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Fig. 3. The considered cluster with the position of 100 RRHs taken from
the OpenCellID database.

realistic network setup, in our simulations we have extracted
a cluster R(FULL) of multiple RRHs deployed in Boston,
MA (USA) from the OpenCellID database [35]. A cluster
consisting of 100 RRHs, and the position of each RRH is
illustrated in Fig. 3. We assume that the density of wireless
devices in the considered cluster is set to 5000 devices/km?.
Furthermore, we consider the case where a set M of M = 20
MVNOs are willing to competitively deploy RAN slices to
provide MUs with wireless access to the internet. We assume
that each MVNO m serves the same number n,,, of devices.
Hence, the density of wireless devices served by each MVNO
is 5000/M devices/km?.

We assume that all RRHs are LTE base stations operat-
ing at 2.4GHz. The path-loss exponent is set to a = 3,
e.g., urban scenario, and the channel noise power is N =
—174dBm/Hz [34]. We consider isotropic antennas with
antenna gain equal to 3dBi, reference distance dy = 1m [36]
and k = 9.89-107° [37].

We assume that the amount of available resources at each
RRH r, ie., A,, is represented by the number of LTE
Resource Elements (RE) within an LTE Resource Block (RB).
Specifically, we assume that each RB consists of s, = 7
OFDM symbols transmitted over ¢, = 12 subcarriers for
all » € R. Note that the number of available RBs, and
thus A, depends on the LTE channel bandwidth. Specifically,
we have that A, = Ngg - s, - ¢, where Nyp € {25,50, 100}
represents the number of available RBs in the LTE system
when the bandwidth is set to 5, 10, and 20 MHz, respectively.
Unless otherwise stated, we assume b = 20MHz. That is,
A, = 100 REs are available for MU transmission at each RRH.
Furthermore, to investigate the impact of different minimum
Quality of Experience (QoE) levels on the performance of
the slicing mechanism, in our simulations we consider three
different minimum SINR requirements such that SINR, &
{0,10,20} dB.

The price p, associated to each RRH r € RFULL) jg
assumed to be generated according to a normal distribution
with mean value p, = 10 Price Units (PU) and standard
deviation o, = 4 PU. Instead, the weight 7! in (6) and the
access rate p of MUs in (27) are assumed to be uniformly
distributed and are randomly generated at each simulation run.
More in detail, 77 takes value in [0, 77], with 77 = 5-1074,
while p € [0, 1].

To investigate the impact of the number R of RRHs
deployed in the network on the achievable performance of the
network, for any given R € Z, in our simulations we generate
a subset R C R(ULL) of R RRHs which are randomly picked
from RFULL) The results presented in the following are
averaged over 2000 independent simulation runs. The 95%
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confidence intervals are not shown when below 2% of the
average.

Before going into the details of our performance evaluation
results, in Section VIII-A we consider a case-study that will be
useful to our investigation. Specifically, we derive a worst-case
estimation of the parameter NN, that ties together minimum
SINR requirements, number of resources, user’ distribution
and number.

A. Evaluating N, : A Case-Study

Let us consider an MU communicating with RRH r. The
received power at the MU’s side can be denoted as p, =

«
k (%) , where k is a constant that accounts for transceiver

design parameters such as antenna gains, channel characteris-
tics, transmission power of the RRH and operating frequencys;
dp is a reference distance for far-field communication; d,. is
the distance between the MU and r; and « is the path loss
coefficient [37]. Specifically, « = 1 corresponds to the linear
path loss model, o < 2 models the free space or indoor path
loss, and « > 3 models urban and sub-urban scenarios.

Let us assume that the RRH 7 serves all MUs in its range
with the same transmission power level p,., and let N, be the
number of MUs in the coverage radius of r. Let us consider a
single resource (e.g., one sub-carrier or a RB), the Signal-to-
Interference-plus-Noise Ratio (SINR) measured by each MU

at distance d,. from r can be written as SINR, = N-',-]\Z;ﬁ’

where N is the channel noise power, and i, € [0, 1] represents
the percentage of MUs currently served by the RRH when the
number of MUs within the RRH coverage range is maximum
and equal to N, — 1, i.e., the worst-case scenario.

Let SINR{™™ be the minimum QoS level that each RRH
wants to provide to each MUs. To meet the target SINR level,
some straightforward calculations show that the following

relationship must hold

~ 1 1 N
N, <1+ —

_ N(MAX)
fr \ SINR{™™  py "

27)

Since the number of resources at RRH r is A,, we have
that a worst-case estimation of N, gives N, = NT(MAX)A,,.

Remark 2: We notice that (i) the maximum number of users
that can be served by RRH 7 is proportional to the available
network resources A, and decreases as ., increases; and that
(i1) N, decreases as the minimum SINR level and the distance
d, increase.

B. PoA and Convergence Speed Analysis

We first investigate the performance of the proposed RAN
slicing algorithms as compared to an algorithm computing
the social optimum as discussed in Section V-B. In Fig. 4,
we show the PoA of the proposed slicing solution as a function
of the ratio R/M and for different values of Nrp when
p = 0.8. The figure concludes that the Price of Anarchy
(PoA) is small and never exceeds 1.08 in all the considered
cases, i.e., the proposed solution provides near-optimal slicing
of the network resources even though the cluster consists of
approximately 100 RRHs. Furthermore, Fig. 4 shows that the
proposed solution achieves better performance in terms of
optimality gap when a small number of RBs is considered.

Fig. 5 shows the impact of the weighing parameter 7> on
the cost function (7) of the PoA. The weight 77 is uniformly
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Fig. 4. The PoA of the proposed slicing solution as a function of the ratio
R/M for different number Nrp of RBs and minimum SINR requirement
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Fig. 6. Execution time of several solutions for different minimum SINR
requirements (Solid lines: Algorithm 2; Dashed lines: Algorithm 1; Dotted
lines: Centralized optimal solution).

distributed in [0, 77]. Accordingly, in Fig. 5 we let the upper-
bound 77 vary for different values of the minimum SINR
requirement. Fig. 5 clearly shows the existence of two distinct
regions; the first region is associated to small values of 77,
i.e., those network scenarios where MVNOs primarily aim at
minimizing the congestion cost in (7). In this case, the PoA
increases until a maximum value is attained. Instead, when
higher values of 7P are considered, i.e., the deployment cost
associated to each slice is no more negligible, the PoA asymp-
totically decreases to one until near-optimality is achieved.
Fig. 6 compares the execution time of the solution proposed
in this paper. Specifically, we compare the time needed by
a centralized algorithm to compute an optimal solution, and
that needed by Algorithms 1 and 2 to compute a NE. The
results conclude that the centralized algorithm (dotted lines)
suffers from severe complexity issues when dense networks
are considered. On the contrary, both the BRD (dashed lines)
and learning (solid) algorithms show faster convergence rate.
Furthermore, Algorithm 1 still requires to solve the QP
problem (18), which usually has polynomial computational
complexity. Instead, Algorithm 2 has linear per-iteration
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and per-user complexity, which results in faster convergence
towards the NE.

To investigate the convergence speed of Algorithm 2 under
the fixed step-size rule, in Fig. 7 is shown the number of
iterations needed by the learning algorithm to converge to
the NE as a function of the value of the step-size parameter
for different minimum SINR requirements and values of the
number R of RRHs. It is worth noting that the higher the value
of the step-size, the higher the convergence speed of the
algorithm. Furthermore, the convergence of Algorithm 2 is
slowed down when the number R of RRHs is large. However,
by increasing the value of the fixed step-size, the convergence
speed is reduced even in those scenarios where the number of
RRHs and MVNOs is high.

C. Congestion and Deployment Costs Analysis

Fig. 8 shows the impact of the ratio R/M on both the
average congestion and the deployment cost of the network for
different values of the number of RBs and the minimum SINR
requirement when 1 = 0.8 and 77 = 5 - 1072, Specifically,
the congestion at each RRH is evaluated as in (5). Instead,
the deployment cost of each MVNO m € M is computed
according to (10) and then normalized by the corresponding
weight 77 to obtain the actual monetary cost. The figure con-
cludes that the congestion is decreasing as a function of R/M.
Intuitively, this is because the deployment of additional RRHs
on the network allows the MVNOs to generate RAN slices
which contain different RRHs, thus inevitably reducing the
congestion level on those RRHs. Furthermore, it is shown that
the deployment cost decreases as well when a larger number
of RRHs are deployed. In this case, MVNOs can select those
RRHs with a low price p,., thus reducing the overall monetary
expenditure. Fig. 8 also shows that when SINR = 20dB
(dashed lines), both the congestion level and the deployment
cost of the network are higher as compared to the case where
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SINR = 0dB (solid lines). In other words, higher values of the
minimum SINR requirements reduce the maximum number of
MUs that can be served by each RRH, which, on average, leads
to higher values of congestion and deployment cost.

From (27), the number N,. of MUs that can be served with
high QoE by each RRH decreases as the access rate p of
MUs increases. As a consequence, the congestion on each
RRH increases due to the high traffic demand generated by
MUs. This phenomenon is depicted in Fig. 9 where we show
the average congestion level on each RRH and deployment
cost of a slice as a function of the access rate p for different
values of the minimum SINR requirement and R. Intuitively,
the congestion increases when both p and the minimum SINR
level are high, and a small number of RRHs is deployed.
Accordingly, to support the high traffic demand, MVNOs add
more RRHs to their slice, which increases the deployment cost
of each slice.

The impact of 77 on the congestion level of the sliced
network is investigated in Fig. 10, where we show the average
congestion level and deployment cost as a function of 77
for different values of the minimum SINR requirement and
number of RRHs when z = 0.8. It is worth noting that 77 = 0
implies that the cost function in (7) does not account for the
monetary price of slices anymore. From a purely practical
point of view, this scenario relates to the case where MVNOs
have a very large (and possibly infinite) monetary budget.
Therefore, each MVNO seeks to individually minimize the
congestion level of its corresponding slice while disregarding
any cost-efficient spending policy. For this reason, the lowest
values of congestion are achieved when 77 = 0. On the
contrary, the average congestion increases when 77 increase
as well. That is, when MVNOs are more cautious about their
monetary expenditure, they are prone to select cheap RRHs,
even though these RRHs have already been selected by other
MVNGOs in the network. This is clearly visible in Fig. 10,
which shows that the deployment cost of the slices decreases
as w7 increases. In fact, by increasing the weight parameter,
MVNOs are more affected by deployment costs and converge
towards more conservative slicing strategies to avoid high
monetary expenses. Finally, Fig. 10 shows that the average
congestion when only few RRHs are available (i.e., dotted
lines) is higher than the case where a high number R of RRHs
is deployed on the network (i.e., dashed lines). Intuitively,
when more RRHs are available, it is easier for MVNOs to
select those RRHs that experience very low-congestion or have
not yet been selected by other MVNOs.
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Fig. 10. Average congestion level on each RRH and deployment cost as a
function of 77 for different values of the minimum SINR requirement and
number of RRHs (Solid lines: R = 20; Dashed lines: R = 50).

D. Profit Analysis

In this section, we investigate the profit achieved by the
TO and we compare different pricing policies. Specifically,
we consider three different pricing schemes as follows:

e Uniform Pricing: all the RRHs in R are equally priced,
i.e., a fixed price equal to p, = p, is enforced on each
RRH r € R;

o Weighted Pricing: the price enforced on each RRH is
proportional to IV,.. Speciﬁcally, the price p, for the RRH
r € Rissettop, = . Under this pricing policy,

max N

the TO fixes higher prlces to those RRHs which can serve
a higher number NV, of devices simultaneously;

o Adaptive Pricing: this policy has been introduced and dis-
cussed in Section VII. Intuitively, at each slot ¢, the price
of RRH r is updated according to (26) by considering the
congestion level on r at slot ¢ — 1. From (26), it can be
shown that the adaptive scheme will eventually converge
towards a stable pricing policy when ¢ — oc.

The profit achieved by the TO is shown in Fig. 11 as a
function of the mean value 1, for different pricing schemes.
Since the proposed adaptive pricing model updates the price of
the RRHs at each slicing slot ¢, in Fig. 11 we show the profit
achieved by the TO when t — oo. As expected, the profit
achieved by the TO increases when the value of p,, increases
as well, and it is shown that the proposed pricing model
outperforms the other mechanisms.

E. Experimental Results

To understand the impact of our system in real-world
deployments and compare the convergence speed of the pro-
posed solution with that achieved by an optimal centralized
solution, Fig. 12 shows the experimental results obtained by
executing both the learning and the centralized algorithms on
a testbed deployed on the Amazon Elastic Computing (EC2)
cloud service. Specifically, we have deployed the TO’s code
on a t2.micro instance, having 1 virtual CPU, one 1 GByte of
RAM with 3.3GHz clock speed. We have deployed the code
implementing the MVNO’s slicing policy learning algorithm
on an iMac desktop computer located on Northeastern Univer-
sity campus. To provide a fair comparison with a centralized
optimal solution As we can see from Fig. 12, the learning
algorithm reaches a NE in a limited amount of time (less that
13 seconds for 50 RRHs and 40 MVNOs), despite the over-
head due to communication between the TO and the MVNOs.

Fig. 11.
pricing schemes and values of 7, (Solid lines: 7/, = 5-10~
©h =1072).

Profit of the TO as a function of the mean value p,, for different
5; Dashed lines:
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Fig. 12. Experimental results of convergence time as a function of the number
R or RRHs for different values of the number M of MVNOs.
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Fig. 13. Dynamic behavior of the proposed slicing algorithm.

It is worth noting that the centralized solution outperforms our
solution only for very small network instances, i.e., M = 10.
In this case, in fact, communication delays play a relevant
role in the convergence speed of our solution. On the contrary,
our solution is 10 times faster than the centralized one when
large network deployments are considered, thus showing the
effectiveness of our framework.

In Fig. 13, we show how the proposed RAN slicing algo-
rithm adapts to network changes over time when M = 3 and
R = 10. We assume that the number n,, (t) of MUs served by
MVNO m and their position changes over time. Specifically,
every 50 iterations of Algorithm 2, we randomly generate a
new network configuration by updating both the number of
MUs and their expected position in the cluster. Accordingly,
Fig. 13 shows the average congestion level on each RRH in the
network at each iteration of Algorithm 2. It is worth noting that
Algorithm 2 quickly adapts to network changes and rapidly
converges towards a NE in few iterations even though the
network configuration changes over time.
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F. Minimum Requirements Analysis

To assess the performance of the barrier-based slicing
approach in Section VI-A, we consider two different cases
as follows. A symmetric case where all MVNOs re?uest the

same amount of resources for each RRH, i.e., o n)

a%’ff«m) = A,/M for all m,n € M and r € R. And an
asymmetric case where we divide the MVNO set into two
partitions M! and M!! of equal cardinality, and for any

r € R we set Jﬁ,ﬁl’f;n) = 0.75A,/M for all m € MY,

and Jﬁ,ﬁl’ﬁ") = 0.25A,/M for all m € M. As already
discussed in Section VI-A, not all request profiles o (")
admit a feasible solution. Accordingly, we assume that each
MVNO activates its minimum resource requests on a subset of
cardinality R/2 only. In our simulations, the subset of selected
RRHs is randomly generated at each simulation run. In Fig. 14,
we show the percentage of satisfied MVNOs as a function
of the barrier parameter A, ,. It is shown that the barrier-
based slicing approach is well-suited to provide MVNOs with
the required amount of resources. However, while very small
values of A, , should be considered for the asymmetric case,
larger values are required for the uniform case.

IX. RELATED WORK

Due to its capability to enable agile and efficient sharing of
wireless network resources in 5G systems, the network slicing
problem has attracted increasing attention in the literature [10],
[13], [38]-[41]. Network slicing is not trivial, and it can
be shown that in general it is NP-hard [10]. Centralized
solutions have been proposed for both the slicing of both
the backbone and RAN portions of the network [10], [13],
[42]-[46], but they generally require perfect knowledge of
the network configuration and suffers from high complexity
issues. As a consequence, a variety of low-complexity heuristic
and distributed approaches have been proposed [47]-[51].
However, the above solutions do not consider the adversarial
behavior of virtual operators, which makes it hard to imple-
ment them in competitive scenarios where privacy must be
preserved among multiple entities.

It is worth noting that many instances of the network
slicing problem can actually be reduced to the so-called Virtual
Network Embedding (VNE) problem [52], which consists in
the problem of generating a set of virtual networks upon
a shared physical infrastructure while satisfying a given set
of constraints. Unfortunately, the VNE problem is NP-hard.
Thus, to design effective algorithms with low computational
complexity, a variety of centralized and distributed heuristic
approaches have been proposed in the literature [52]. However,
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all of those solutions are not well-suited to deal with the
competitive slicing of the RAN, where information on the
expected number of users and their distribution in the network
is available. Thus, they cannot be straightforwardly applied to
the RAN slicing problem we are tackling in this paper.

Competition among virtual operators has been recently
considered in [27], where game-theoretical tools have been
effectively exploited to address the RAN slicing problem.
In [27], a RAN slicing game is developed, where the available
RAN resources are allocated to the MUs through an auction-
based mechanism which competitively maximizes the data rate
of each slice while guaranteeing a certain level of fairness.

Though the problem tackled in [27] is similar to that
addressed in this paper, there are several fundamental differ-
ences. First, in [27] a fixed share of RAN resources is assigned
to each MVNO a-priori, and the auction game is then played
by the MVNOs to decide on how to divide those resources
to the mobile users. In our paper, conversely, the share of
RAN resources allocated to each MVNO has been obtained
as a consequence of a non-cooperative game played among
the competing MVNOs. Another important difference is that
perfect knowledge about the presence of users is assumed
in [27]. In our paper, instead, we have relaxed this assumption
by assuming that only statistical information on the presence
and position of the users is available.

In this paper, we have leveraged on a particular class of
congestion games, i.e., the atomic splittable congestion games.
Although the uniqueness of the NE for this class of games
is a well-known result in the literature, how to efficiently
compute a NE is still a challenging issue. Closed-form solu-
tions have been derived in [53], which however only hold for
resource-specific cost functions. When closed-form solutions
cannot be derived, then traditional sequential BRD have been
considered [54]. However, those approaches generally require
to solve QP problems, and are guaranteed to converge to
the unique NE only after an infinite number of iterations.
Recently, a quantization approach which can compute the
NE in a finite amount of time has been proposed in [28].
However, it suffers from highly polynomial complexity, which
makes it hard to implement it in dynamic scenarios. Upper-
bounds on the PoA of atomic congestion games have been
investigated in [31] and [55], but they only apply to the case
of resource-specific cost functions. Similarly, upper-bounds on
the PoA for a particular class of congestion games have been
derived in [56]. Specifically, authors have shown that it is
possible to derive an even tighter bound on the PoA of 4/3.
Although such result is of extreme importance for the game-
theory community, [56] does not consider the challenging case
where cost functions are both player and resource-specific.
Also, the model considered in [56] does not require solutions
to lie on the simplex, thus preventing the use of such a result
for the problem we considered in this paper.

When compared to the above literature on atomic conges-
tion games, in this work we have proposed a simple low-
complexity learning algorithm where each MVNO iteratively
updates its strategy to provably converge to the unique NE.
We have further derived an upper-bound on the PoA of the
class of atomic splittable congestion games where resource and
player-specific cost functions are considered, thus extending
the results in [31] and [55]. Specifically, we have proved that
the PoA for this particular class of cost functions matches
the PoA of atomic splittable congestion games where only
resource-specific cost functions are considered [31].
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X. CONCLUSIONS

In this paper, we have leveraged congestion games and
learning mechanisms to design a distributed solution to the
wireless network slicing problem. The proposed solution
accounts for the limited availability of wireless resources
and considers several aspects such as congestion, deployment
costs and distance among the RRHs and MUs. We have
shown that the proposed solution achieves near-optimal global
performance with limited computational complexity while pre-
serving the privacy of MVNOs. Numerical and experimental
results have shown the effectiveness of the proposed approach
in terms of cost reduction, scalability and convergence time.
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APPENDIX

A. Proof of Proposition 3 (Potential Function and NE Unique-
ness)

Proof: The cost functions in (7) are strictly convex in
cach player’s strategy &,,. Thus, the general theory of [57] on
concave games ensures the existence of at least one NE.

To prove that G is an exact potential game, we must show
Ihal Cm(gm's f—m) - Cﬂ:(g;n, m) = q)(gm's m) - (D(éf:“, g—m)
ror a]] me M ‘dI’ld (gt?’l" fn) (é:!ﬂ" fn) E

Let us consider the j-th MVNO in M, and consider two
allocation profiles (£,,&_;) and (v, v_j) such that §_; = v_;
and §; # v;. Since §_; = v_;, we have

O£ )-D(v.£_)) Z (&2, =2 )+, & —vin) +
rc‘R

Z Z ‘Em,r Z Ek r — Vmr Z Vi,r (28)
rcik mc_M k<m k<m

Note that

Jj=1 M

Z !Em,r Z fk,r = Z fm,r Z ‘fk,r"' Z ‘fm,r Z ‘f.k,r (29)
meM k<m m=1 k<m m=j k<m

Since &_; v_;j by assumption, we have that

-1 g1 . ~ lac
Zm:] Emr Z.k <m Skr Zm:] Vin,r Zk <m Vk,r- Thus, the last

summation in (28) can be rewritten as follows:

> Z («f D Er—mr Vk’,) _

reR mcM k<m k<m
Jj=1
Z (EJ. Skr = Vir "Lr)
reR k=1
( L, F Z ‘fﬁ r~ Vmr Z Vk,r) =
rC'R 1=+ k<m k<m

J= j=l
Z f_; r Z —Vir Vi,r
rei k=1

+ Z NL Z Emr (!E_,r',r - V_,r',r) =

rer " m=j+1

Z ‘E_,r r Z ‘fm r— Vir Z ‘Em,r

rC'R m#j m#j

(30)

where the last step is obtained by exploiting £ ; = v_;. By
substituting (30) in (28), we obtain:

¢ £ ) -0 & )= Z

+& ) fm,r)

rc'R m#j
1 2
Njr&jr — Z F F T Vir Z Vir | T MjrVir =
rer " m#j

f'm('fjs f—_,r) (31)

which proves that the function @(-) in (12) is an exact potential
function for the game G. Note that the Hessian matrix of
®(£) with respect to € has strictly positive eigenvalues, which
guarantees that the potential function is strictly convex and

—cm(Vj, 'f—j)

admits a unique global minimizer. It is worth noting that ®(£)
is a potential function for G, and is convex on the convex set S.
Hence, the set of minimizers of ®(£) coincides with the set of
NEs of G [58]. Since @(£) admits a unique global minimizer, it
must follows that the NE of G is unique. ]

B. Considerations on the Potential Function (12)

To investigate the meaning of the potential function in
Equation (12) (Equation (16) in the previous version of the
paper), let us first define the concept of congestion-free cost
Jfunction. A congestion-free congestion function represents the
cost experienced by each MVNO when it is the only in the
network, or equivalently, when no other MVNO participate
in the slicing game. From (5)-(7), the congestion-free cost
function for MVNO m is defined as

1
Cgl(gﬂl) = Z Em,r (Ffm,r + Tfmr)
rei r !

It is easy to show that the potential function can be reformu-
lated as follows:

D(€) = Z Z Em,r ( Emr + Mnr | + — Z Emrk,r
mcMreR r k<m
= Z (fm) + Z Z Z Emrk,r
meM rc_'R mch<m
= D nEm + 5 Z e
meM rc'R
where &, = [&1, &0 -+ Em.r] and H is an hollow matrix with

all one entries in the non-diagonal elements.

The term on the right represents the sum of unique products
between the variables in £, and can be related to a mutual
interference cost term. Instead, the term on the left side provides
an interesting result that it is worth to mention. Specifically,
the term .,z €o,(£€,,) represents the overall slicing cost, i.e.,
the social welfare, that would be experienced by the network
when no congestion occurs. To provide a tangible example, the
congestion-free scenario corresponds to the case where each
RRH is first duplicated in M identical virtual copies, and then
each copy is exclusively assigned to one MVNO only. In this
case, though multiple MVNOs can add the same RRH to their
slice, they will be able to select different congestion-free virtual
copies.

Our analysis provides an interesting result: to find the NE of
the slicing game is somehow connected to the minimization of
the social-welfare of a completely congestion-free scenario.

C. Proof of Proposition 4 (Bound on the PoA)

Proof: Let us consider two allocation profiles £&,v € S
such that & is the unique NE of game G, and v is the optimal
solution of (13). From (14) and (7), we have

E_ Z Z ‘_’;:m,rcm,r(f) =

meMreR

Z Z Emr {:Cm,r('f) — Vm,r (f) + vm,r(é:))

meMreR

(32)
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Since &y pEm,(€) 1s convex in €, we have that vy, () (v, —
&mr) = 0. Hence, by exploiting (15), (32) can be maximized as
follows:

CNE < Z Z ‘fm,r(cm,r(f) - Vm,r(g)) + Vir Vm,r(f) =

mecMreR

Z Z Emr(Cor (&) = vir(€)) +

meMreR
Vm,r(""m,r(f) - Cm,r(v) + Cm,r(“’)) =

S [ (€)= v (€)) +

meMreR
Vm,r(""m,r(f) - Cm,r(v))] + COPT

< ‘8 Z Z ‘fm,rfm,r(f) + COPT = ﬁCNE + C()PT (33)

reRmeM

which implies that CN* < 15 . COPT.

D. Proof of Theorem 5 (The PoA is upper bounded)

Proof: Let us consider two allocation profiles £,v € 8.
From (16), the numerator of (15) can be rewritten as

Z !’::m,r ("-m,r(f) - Vm,r(f)] + Z Vin,r (Vm,r(f) - Cm,r(v)) =

meM meM

Z !’::m,rfm,r(!f) _Z Vm,r(-'m,r(v) +Z Vm,r(f) [Vm.,r - fm,r} =
meM meM meM

ﬂ;“ Vm,r ((-'m,r(f) - Cm,r(v)) + NL,, Z (Vm,r‘fm,r - ‘frzn,r) =

meM

1 ' 1

Z Vin,r (Cm,r(f) - Cm.,r(v) + F‘fm,r) - F 3"‘;-
meM r r

Foreachr e R, letY, = ¥ vy, and X, = 3, p¢ Emr» Where
Emyr € € and vy, € €. From (5) and (6), we have that

(34)

X,
Cm,r(f) = (f’r(f) + My = F + m,r (35)
and .
Cm,r(f) - (-'m.,r(v) = F(Xr -Y) (36)

It is worth noting that (35) contains the player and resource-
specific term 5, that prevents the readily use of the fundamen-
tal results on the boundedness of the PoA in [31]. Accordingly,
in the remainder of this proof we first derive upper-bounds
for (34), then we show that the dependence from 7, , can be
relaxed, and we finally apply the results in [31] to compute the
PoA of our game.

From (35) and (36), (34) can be reformulated as follows:

1
_Eﬁﬂ' =

) .
Z Vi, r ((-m,r('ﬁ:) - tr~m,r(") + E‘fm,r) - N,

meM

1 1
F Z Vm,r(Xr Y+ !’::m,r) - F Z !’::rzn,r =

" meM " mem

1 1 1
E(Xr — Yr)Yr + F Z Vm,r‘fm,r - Fr Z ‘ffﬂ,r =

" meM meM

1 2
F sup {(Xr _Yr +‘fic,r)}';‘ - Z ‘f;ﬁr}

rkeM me M

(37)

16
Note that
Y;‘(Xr -Y + ‘fic,r) =
(X, + fk,r)z Xy + &y ? (X, + ‘fk,r)z
Sl (ZEE g ) IRy

Thus, the last term in (37) can be further maximized as
follows:

sup {(Xr - Y;‘ + !’::k,r)yr - Z ft%l,r} =

kem meM

Xr r 2
sup {“f&) — Z fﬁ;,r} (39)
keM meM

It is worth noting that (39), which is a maximization of the
numerator of g in (15), does not depend on the value of v
anymore. Accordingly, we have that

X, +&,) -4 T &,
meM

ﬁ<lsup— sup

4w Nr geskem 2 EmrCmr(§)
meM
X2 426X, -3¢ —4 % £
1 1 r Ck,rr Sk.r 2 m,r
n

< —sup— su

2reR N, cesm T Enrinr®

mc

(40)

where werecall that & € £, and X, = 3, o Epr With &y, €

£.
By substituting (35) in the denominator of (40), and by
maximizing it by removing the term 7, ,, we obtain

X7 +26,X, - 36, -4 Zk &
m#

1 1
p < —sup— sup
4 reR Vr £cS.keM NLFX,, chM fm.r
XE + z‘fk,rXr - ”"ff,- -4 Zk ‘frzn,r
m#
< —su su
- rc‘,-'l?:.ch,kEiM sz
1
< —sup 1+2rk—3rf—4Zr,2,, 41
4 teT m#k

where t,, = "c;';’,t = (tm)mem> and T = {t,, € [0,1] :
Ymemtm = Litx = t; ¥j € M}. Since X, = e Emrs
we have that (41) does not depend on r € R anymore. Also, let
us note that the supremum of the function in the r.h.s. of (41) is
achieved when

3+M 2
C=Toam T Ty o EM) “2)

By plugging (42) in (41), we obtain

1[12M% —8M — 4 M—-1

< - = 43
ﬂ_4| (1+3M)2 1+3M “3)
From (43) and Proposition 4, we obtain that C%;; < # <
M+ 1. which concludes the proof. [ |



