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Abstract—Today’s radio access networks (RANs) are monolithic
entities which often operate statically on a given set of parameters
for the entirety of their operations. To implement realistic and
effective spectrum sharing policies, RANs will need to seamlessly
and intelligently change their operational parameters. In stark
contrast with existing paradigms, the new O-RAN architectures
for 5G-and-beyond networks (NextG) separate the logic that con-
trols the RAN from its hardware substrate, allowing unprece-
dented real-time fine-grained control of RAN components. In
this context, we propose the Channel-Aware Reactive Mechanism
(ChARM), a data-driven O-RAN-compliant framework that allows
(i) sensing the spectrum to infer the presence of interference
and (ii) reacting in real time by switching the distributed unit
(DU) and radio unit (RU) operational parameters according to
a specified spectrum access policy. ChARM is based on neural
networks operating directly on unprocessed I/Q waveforms to
determine the current spectrum context. ChARM does not require
any modification to the existing 3GPP standards. It is designed
to operate within the O-RAN specifications, and can be used in
conjunction with other spectrum sharing mechanisms (e.g., LTE-
U, LTE-LAA or MulteFire). We demonstrate the performance of
ChARM in the context of spectrum sharing among LTE and Wi-
Fi in unlicensed bands, where a controller operating over a RAN
Intelligent Controller (RIC) senses the spectrum and switches
cell frequency to avoid Wi-Fi. We develop a prototype of ChARM
using srsRAN, and leverage the Colosseum channel emulator to
collect a large-scale waveform dataset to train our neural networks
with. To collect standard-compliant Wi-Fi data, we extended the
Colosseum testbed using system-on-chip (SoC) boards running
a modified version of the OpenWiFi architecture. Experimental
results show that ChARM achieves accuracy of up to 96% on
Colosseum and 85% on an over-the-air testbed, demonstrating the
capacity of ChARM to exploit the considered spectrum channels.

I. INTRODUCTION AND MOTIVATION

According to the new Cisco Annual Internet Report, 5G
and beyond (NextG) networks will support more than 10%
of the world’s mobile connections by 2023, with more than
5.7B users – 70% of the global population – using mobile
cellular connectivity [1]. Due to this sheer growth in wireless
demand, current spectrum bands below 6 GHz will inevitably
become saturated. For this reason, the Federal Communication
Commission (FCC) has recently opened 1.2 GHz of spectrum
in the 6 GHz band, basically quadrupling the amount of space
available for routers and other unlicensed devices [2]. More-
over, 150 MHz of spectrum in the Citizen Broadband Radio
Service (CBRS) band can now be accessed [3], [4], shared with
incumbent radar communications.
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As new spectrum bands become open for unlicensed usage,
it becomes crucial to protect incumbent users (i.e., previous
license owners), as well as establishing fair coexistence among
unlicensed users. For example, it has been demonstrated that
Wi-Fi throughput can drop up to 70% without a dedicated LTE
co-existence mechanism [5]. To this end, spectrum sharing
has emerged as a key technology to fuel wireless growth in
these bands [6]. Spectrum sharing enables multiple categories
of users to opportunistically select frequencies and bandwidth
of operation, according to given constraints (e.g., band limits
and incumbent priorities).

Due to the dynamic nature of spectrum policies and the
unpredictability of unlicensed usage, spectrum sharing will re-
quire radio access networks (RANs) to change their operational
parameters intelligently and according to the current spectrum
context. Although existing RANs do not allow real-time recon-
figuration, the fast-paced rise of the Open RAN movement and
of the O-RAN framework [7] for 5G-and-beyond (NextG) net-
works, where the hardware and software portions of the RAN
are logically disaggregated, will allow seamless reconfiguration
and optimization of the radio components [8]. Despite their
compelling necessity, to the best of our knowledge there are
no O-RAN-ready technologies that can drive real-time RAN
optimization, as discussed in details in Section II.
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Fig. 1. Overview of the O-RAN-based ChARM spectrum-sharing framework.

For this reason, in this paper we propose the Channel-Aware
Reacting Mechanism framework (in short, ChARM). Fig. 1
shows a high-level overview of ChARM and its main logical
components, including the O-RAN interfaces used to collect
and exchange data among the different components. ChARM



Fig. 2. Spectrum sensing based on different frequencies. The sensing band-
width is set to 20 MHz (the LTE channel bandwidth in the ISM band). Some
channels present radio signals, but their identification as legitimate communi-
cation or just noise requires a classifier.

is a data-driven framework that enables RAN owners to (i)
sense the spectrum to understand the current context through
a Spectrum Classification Unit (SCU); (ii) react in real time
by switching the Distributed Unit (DU) and Radio Unit (RU)
operational parameters according to a specified spectrum access
policy decided by Policy Decision Unit (PDU). Both SCU and
PDU are located in the O-RAN near-real-time RAN Intelligent
Controller (RIC), which receives input by the non-real-time
RIC. The latter is tasked with (i) collecting the spectrum I/Q
data and creating a dataset; (ii) training and testing the machine
learning (ML) algorithms that are eventually deployed onto the
real-time RIC through the A1 interface.

The key innovation behind ChARM is providing Open RAN
networks with the capability to intelligently determine which
wireless technology is utilizing the spectrum, so that intelligent
spectrum policies can be implemented. To this end, the SCU
of ChARM leverages Deep Neural Network (DNN) trained on
unprocessed I/Q samples to classify communication technolo-
gies with low latency [9]. Different from prior work, however,
we design our classifiers to include an abstain class (see,
for example, [10]) to minimize misclassifications of unknown
wireless technologies (something likely in the Industrial Sci-
entific Medical (ISM) band). Figure 2 shows an example of
spectrum occupation in the ISM band between 5.18 and 5.24
GHz, where different wireless technologies are utilizing the
spectrum. According to the given spectrum utilization rule,
the PDU unit of ChARM may decide to switch to the empty
5.2 GHz band, also called inter-channel sharing, or activate a
co-existence mechanism inside the occupied channel, such as
(LTE-U, LTE-LAA or MulteFire). This methodology is called
intra-channel sharing.

To the best of our knowledge, ours is the first framework
providing the capabilities defined above to O-RAN-ready net-
works. The closest work to ours is due to Tarver et al. [3],
who presented a solution for sensing and reacting nodes for the
CBRS context, as well as Uyadov et al. [11], who propose a
sensing and reacting framework optimizing the usage of frag-
mented, unused portions (holes) of spectrum. However, these
approaches require deep modifications of the 3GPP and 802.11
standards, which ultimately makes them not readily adaptable
to state-of-the-art O-RAN networks. Some solutions [12], [13]
rely on a centralized orchestrating node, do not actively sense
the state of the spectrum, or are inherently limited to two
technologies (LTE and WiFi). Moreover, legacy approaches

do not allow the customization of the behavior by the Mobile
Network Operator (MNO), and are not compatible with O-RAN
specifications. Conversely, operators should be able to specify
customized reactions tailored to the sensed technology and the
band of operation.

As part of the novel contributions of this paper, we address
(i) the need for a large waveform dataset to train the DNN with,
and (ii) the development of a real-time working prototype. To
experiment in both emulated and over-the-air channels, we de-
velop a prototype for both the Colosseum channel emulator and
the over-the-air Arena testbed. Colosseum enables researchers
and practitioners to control the wireless channel environment
while using state-of-the-art Software Defined Radio (SDR)
devices. While Colosseum has not been designed to work with
Wi-Fi devices, we extend Colosseum with new hardware in the
loop, proving its extreme flexibility and extensibility. Our pro-
totypes prove that ChARM is fully O-RAN-ready, it can interact
with the 3GPP and 802.11 standards, and it is designed to be
used in combination with any other intra-channel mechanisms.

To summarize, this paper makes the following novel techni-
cal contributions:

•We present ChARM, an O-RAN-based framework for spec-
trum sharing in the ISM band. ChARM is composed by (i) a
spectrum classification unit (SCU) based on DNNs for real-time
spectrum classification, (ii) a policy decision unit (PDU) that
defines the actions to be taken upon the inference produced by
the SCU;

• We design and implement a ChARM prototype based on
standard-compliant srsRAN software. Through this prototype,
we demonstrate ChARM in the context of spectrum sharing
among LTE and Wi-Fi in unlicensed bands, where the RU
reactively switches cell frequency to avoid Wi-Fi according to
the DNN-based SCU inference. We leverage the Colosseum
channel emulator to collect a large-scale waveform dataset to
train our neural networks with. To collect standard-compliant
Wi-Fi data, we extended the Colosseum testbed using System
on Chip (SoC) boards, running our patched version of Open-
WiFi [14], an 802.11a/g/n implementation specifically designed
for SoC boards. We demonstrate the feasibility of our approach
by deploying our software and the DNN model, trained on
Colosseum, in a wireless test-bed, Arena [15], and operating
it in the ISM band with incumbent WiFi communications.
Experimental results show that our neural networks achieve
accuracy of up to 96% on Colosseum and 85% on Arena,
demonstrating the capacity of ChARM to exploit the considered
spectrum channels;

• For reproducibility purposes and to stimulate further re-
search, we provide access to our code and dataset (Section VI).

II. RELATED WORK

A significant amount of prior work has tackled spectrum
sharing in the ISM band, primarily targeting spectrum sharing
between LTE and WiFi. Some approaches assume a collabora-
tion between LTE and WiFi nodes; Chen et al. [16] envision the
creation of a LTE/WiFi super node, internally optimizing the



spectrum usage fairness. Gawlowicz et al. [17] design a frame-
work for side channel communication between WiFi access
points and LTE Base Station (BS)s. These approaches, along
with the one by Bocanegra et al. [5] that modifies the WiFi
access point software, are challenging to deploy in practice, and
hardly extensible to consider other technologies beyond LTE
and WiFi. Some prior approaches achieve co-existence at the
physical layer (PHY). The work by Yun et al. [18] focuses on
interference cancellation and beamforming exploiting multiple
radio antennas. Almeida et al. [19] focus on exploiting a 3GPP
standard feature, the Almost Blank Subframe (ABS), and they
paved the way for the standardization of LTE-U [20], originally
proposed by Qualcomm, as a mean of intra-channel LTE co-
existence. Guan and Melodia [21] mathematically modeled
the fairness of LTE-U systems and proposed algorithms to
maximize throughput under fairness constraints.

The solutions based on LTE-U could not be deployed in
Europe and Japan, where regulations impose to use a Listen
Before Talk (LBT) mechanism (CSMA/CA-like) to access the
ISM band. Hence, 3GPP standardized another technique called
LTE-LAA [22], which is an extension to LTE enabling LBT.
Several works stemmed from this standardization effort; Chal-
lita et al. [23], and later, Tan et al. [24], propose to employ ML
to forecast Wi-Fi transmission and optimize LTE consequently.
Garcia Saavedra et al. [25] raised attention on LTE-LAA un-
fairness cases and propose optimizing parameters to minimize
them; Gao and Roy [26] addressed instead the unfairness by
modeling LTE-LAA communications with Markov models.
The works by Chai et al. [27] and Saha et al. [28] introduce
modifications to the LTE base station and the WiFi access
point, respectively. Both these solutions and the ones based on
LTE-U and LTE-LAA focus on intra-channel spectrum sharing.
Huang et al. [29], instead, propose to achieve a fair co-existence
between LTE and WiFi transmission by inter-channel optimiza-
tion through a real-time intensive CUDA computation. Qian et
al. [12] address the problem of centralized spectrum allocation
among different MNOs. The approach by Mosleh et al. [13]
presents an ML framework to optimize the spectrum usage by
LTE and WiFi. However, it does not include sensing functions
and its application is limited to those two technologies. Even
though existing work tackles wireless technology classification
through DNN [9], to the best of our knowledge, we are the first
to propose a full-fledged O-RAN based framework for sensing
and reacting cells, while maintaining full compatibility with the
3GPP standard.

III. THE CHARM FRAMEWORK

A. Background on O-RAN

O-RAN and the NextG architecture are based on the 3GPP
functional split. The functionalities of the base stations are
virtualized and disaggregated, often running on multiple phys-
ical nodes. These functionalities are grouped in Central Unit
(CU), DU, and RU. Specifically, while CU deals with protocols
higher in the stack, DU is responsible for time-critical opera-
tions (including most baseband processing), while the RU is in

charge of radio frequency and of some Physical layer (PHY)
functionalities (e.g., beamforming, fast Fourier transforms).

Moreover, O-RAN has been designed to embrace program-
matic control based on ML and on the open source paradigm.
For this reason, it exposes analytics and control knobs through
the non real time RIC and the near real time RIC. These
two components are responsible of the intelligent control of
the network. The former handles operations with coarse time
granularity (such as training a DNN model, orchestration of
containers, among others), while the latter handles operations
that need to be performed within a second, for example, the
inference of a DNN model. The near real time RIC also allows
running customized network functions (called xApps), which
MNO can install in their nodes. ChARM has been specifically
tailored to be deployed as an xApp in the near real time RIC
and integrated in the NextG architecture.

B. Overview of ChARM

Figure 3 represents a high-level overview of the main logical
components of ChARM in the context of O-RAN. The frame-
work requires at least two co-located radios, one for mobile
network communications (indicated with TX/RX), and another
for sensing (indicated with RX). Moreover, ChARM is com-
posed of (i) a spectrum classification unit (SCU) responsible of
scanning various given frequencies and classify each of them,
which comprises of a pre-defined set of frequencies to evaluate
and a DNN for I/Q sample classification, (ii) a policy decision
unit (PDU) which takes as input the latest frequency evaluation
by the classifier, embeds a policy which can be customized by
the operator (see Section III-D), and communicates to the DU
unit the changes to apply to the on-going communication, and
(iii) the DU, which implements the control interface to receive
commands from the PDU.
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Fig. 3. ChARM system framework. Sub-blocks in the Policy Decision Unit
indicate possible reacting strategies. While the framework is flexible enough
to implement several different ones, for the purpose of this paper, we employ
those highlighted in blue.

A walk-through. We provide an overview of the key opera-
tions of ChARM with the help of Fig. 3. While the RU can be
communicating with zero or more User Equipments (UEs), the
SCU periodically indicates to the DU (step 1) to reconfigure
the RX radio to a different frequency (step 2). Then, the DU



collects I/Q samples (step 3), which are fed to the SCU (step 4).
Then, the SCU classifies the samples through the DNN and the
result (i.e., frequency and class) is provided to the PDU (step
5). The PDU is thus aware of (i) which frequency the RU is
using for mobile communication, (ii) which is its latest assigned
class, and (iii) the classes assigned to the other frequencies
under sensing. The PDU may react to the sensed spectrum state
triggering one or multiple of its functionalities, for example:

• Frequency switch, which makes the RU change center
frequency;

• Coexistence mode, which enables or disables a specific
coexistence mechanism of the RU;

• Bandwidth switch, which changes the signal bandwidth in
the ISM band;

• TX gain switch, changes transmission gain of the RU.

The chosen reacting functions depend on the sensed spec-
trum state and the network operator policy (detailed in Sec-
tion III-D), and they are sent to the DU (step 6). The DU adapts
the spectrum usage with respect to the received commands
(step 7). In the case of frequency or bandwidth switch, it com-
municates with the UEs through a 3GPP-standard compliant
reconfiguration message [30] to grant the continuity of the
ongoing communications.

C. Spectrum Classification Unit

Sensing Procedures. Sampling a given frequency implies
tuning the receiving radio and wait for the phase locked loop
(PLL) to stabilize. This can take up to several tenths of seconds
for each single channel to inspect. Alternatively, SDRs can be
used to sense a larger portion of spectrum (multiple of channel
width) and then filter out the channels of interest. While the
latter does not present the inconvenience of frequency retuning,
it has two main drawbacks: (i) state-of-the-art filtering, the
polyphase channelizer [31], requires a large numbers of taps
to be accurate, at the cost of being slower than retuning, and
(ii) SDR maximum input bandwidth is constrained by hardware
(e.g., 80 MHz on Ettus Devices USRP X310), which limits
the sensing capabilities. Early experiments – not included due
to space limitations – have shown the impracticability of the
channelizer solution. For these reasons, ChARM employs a
frequency hopping sensing mechanism.

DNN. I/Q samples represent a time series stream of data.
Existing work has proven that Convolutional Neural Network
(CNN)s are suitable for mining recurrent patterns and identify-
ing key features in the wireless domain. CNNs have been used
extensively for modulation and spectrum classification [32],
[11]. However, in the computer vision field [33], and later in the
audio processing [34], the concept of deep Residual Network
(RN) has emerged and has been demonstrated to be increasingly
effective. For example, RNs use convolutional layers and by-
pass connections, allowing the stacking of significant amounts
of layers and the consequent effective analysis of data at many
different scales. For this reason RNs have been applied to I/Q
stream analysis too [35], and are considered in this paper.

D. Policy Decision Unit

The goal of the PDU is to periodically collect the latest
information generated by the classifier and, according to a
given policy, instruct the DU on which spectrum changes to
undertake. The policy is defined by an MNO to customize the
PDU decisions, and it is bundled in the xApp. It is implemented
as a function evaluating the current system state, defined by the
classes assigned to the frequencies under evaluation, and the
current communication frequency.

Algorithm 1 presents the periodic routine run by the Policy
Decision Unit. Specifically, ch classes is an associative map,
assigning to each sensed frequency by the SCU a technology
label (e.g., {5.18 → Clear, 5.20 → LTE, 5.22 → Unknown})
generated by the DNN. The PDU periodic routine calls the
policy function to determine the actions to perform. If the
policy dictates a change of parameters, it triggers the respective
operations of the DU reconfiguration interface.

Algorithm 1 Periodically run PDU algorithm
1: procedure PRI UPDATE(ch classes, curr freq)
2: freq, coex, pw, bw ← policy(ch classes, curr freq)
3: if curr freq 6= freq then
4: handover(freq)
5: set coexistence(coex)
6: set tx power(pw)
7: set bw(bw)

Frequency switch. ChARM performs a handover whenever
the PDU decides to change frequency. In this phase, it is crucial
to guarantee continuity of the session and avoid disconnections
of mobile UEs. 3GPP standards already indicate the procedure
for inter-frequency handovers, and ChARM exploits it to grant
standard compliant seamless handovers. ChARM RU manages
two cells, one of them serving the UEs, while the other is
kept idle. When ChARM changes operating frequency, (i) it
changes the frequency of the idle cell with the target, and (ii) its
DU sends a message handover through a RRC Reconfiguration
Message [30] to the UEs.

Co-existence mode. ChARM targets spectrum sharing opti-
mization both at the inter-channel level and at the intra-channel
level. ChARM can hence work in two modes, co-existing and
non co-existing. In non co-existing mode the PDU makes
the network nodes communicate the regular way. When the
PDU dictates a handover to a frequency already occupied,
it can switch the DU to activate a predefined co-existence
technique for the detected incumbent technology. Possible
mechanisms include: the increase of Almost Blank Subframe
periods [19], [21], [36] for the co-existence with WiFi, and the
establishment of an X2 interface and the subsequent coordina-
tion through 3GPP Inter-Cell Interference Coordination (ICIC)
techniques [37] for co-existence with LTE BSs. However, the
specific choices for intra-channel spectrum sharing algorithms
and performance are out of the scope of this paper, and we
simply assume that, whenever a co-existence mode is required
and activated, a sensible co-existence mechanism choice is set
in place and the performance improves.



IV. CHARM PROTOTYPE

We first describe in Section IV-A the use-case scenario of
ChARM we consider, as well as its design and implementation.

A. Use-case Scenario: Spectrum Sharing in ISM Bands

We cast ChARM in the context of spectrum sharing in the
license-free industrial, scientific and medical (ISM) bands,
where a 5G O-RAN cellular network (hereafter referred to
as LTE for simplicity), Wi-Fi users and incumbent spectrum
licensees need to share the same spectrum and thus coexist
with each other. Figure 4 depicts the components of the ChARM
prototype and their main interactions. We depict with a shade
of blue and red, respectively, the interactions of ChARM with
the channel: mobile communication and sensing. The image
illustrates the inter-frequency spectrum optimization introduced
in Section I; ChARM addresses that challenge by dynamically
reconfiguring the mobile traffic to handover to the unoccupied
sensed frequency.
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Fig. 4. View of the ChARM prototype components and their interactions.

In this scenario, the radio unit (RU) is composed by a
reconfiguration interface, a sensing radio and a TX/RX ra-
dio. The sensing radio periodically listens to the channel and
feeds the received waveform to the spectrum classification unit
(SCU), which then sends its inference to the policy decision
unit (PDU). The latter then interacts with the RU through the
interface, which lets the TX/RX radio switch channel according
to a given policy. In our experiments, we use a policy function
based on a ranking of traffic classes. The two rankings we use
in the shown experiments are presented in in Table I.

TABLE I
CLASS RANKINGS TO BE USED FOR POLICY.

HIGHER VALUES IMPLY HIGHER PREFERENCE.

(a)

Clear 3
WiFi 2
LTE 1

Unknown 0

(b)

Clear 3
WiFi 1
LTE 2

Unknown 0

Algorithm 2 depicts our ranking-based policy function,
whose goals are (i) to switch to more favorable frequencies
according to the priority defined in Table I, and (ii) activate
the LTE or WiFi co-existing mode if switching to an already
occupied frequency. The activation/de-activation of the co-
existing mode is depicted in Fig. 5.

Note that we purposely avoid to switch to a frequency whose
incumbent technology is unknown to avoid unpredictable com-
munication results. At line 2 of Algorithm 2, we determine
the current classification for the frequency we use for the
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Fig. 5. Intra-channel co-existence. Transitions are consequences of handovers.

communication. Since the DNN classifies interference with
the unknown class, as soon as our system detects unknown or
WiFi communications on the currently used frequency (while in
non co-existing mode), it reacts by switching channel, possibly
switching also to co-existing mode. Conversely, if ChARM is in
co-existence, and it detects a clear channel, it swiftly performs a
handover to occupy it. Even if the framework includes functions
for tweaking BS gain and bandwidth, we choose to use standard
values for our experiments, as their use would unnecessarily
complicate the policy logic for the purpose of this work.

Algorithm 2 Ranking-based policy used in the experiments.
1: procedure RANK POLICY(channel classes, curr freq)
2: curr class← get class(channel classes, curr freq)
3: if curr class = (WiFi|Unknown) then
4: freq, class← maxTable I(channel classes)
5: if coexisting then . currently in co-existence
6: if class = CLEAR then
7: return(freq, FALSE, std gain, std bw)
8: else . new interference detected
9: if best class = CLEAR then

10: return(freq, FALSE, std gain, std bw)
11: else if best class 6= UNKNOWN then
12: if best class = LTE then
13: return(freq, LTE, std gain, std bw)
14: else
15: return(freq,WiF i, std gain, std bw)
16: return(curr freq, coexisting, std gain, std bw)

To classify unknown classes, we employ a classification
mechanism for abstain class called Entropy Selection (ES). ES
is the simplest way to compute an uncertainty score for a predic-
tion, by evaluating the entropy of the predicted probability. Our
DNN outputs three numbers, which represent the probabilities
of the input data to belong to, respectively, clear, LTE or WiFi
channels. Let these probabilities be p0, p1, p2 respectively, then
the entropy is defined as:

H = −
2∑

i=0

pi log pi (1)

H represents the uncertainty score, lower values mean our
DNN is more confident of the classification. Validation of the
model allows the selection of a hyper-parameter α, and the
classification is ultimately defined by:

class =

{
argmaxi=0,1,2 pi, if H < α

3, otherwise.
(2)



Where 0, 1, 2, 3 represents respectively the clear, LTE, WiFi and
unknown classes. We implemented our prototype by leverag-
ing srsRAN (https://www.srsran.com/), an extension of srsLTE
[38]. We consider four frequencies (5.18, 5.20, 5.22, 5.24 GHz),
equally spaced by 20 MHz, which coincide with the channels in
the LTE band 46 and Wi-Fi channels. For this reason, we select
20 MHz as the bandwidth of the sensing radio. We extended
the interface of srsRAN to support two additional commands (i)
change the frequency of a specific cell; (ii) trigger the handover
of the UEs from one specific cell to another.

B. Colosseum Modifications and Data Collection

Training a DNN requires labelled ground-truth data that
is realistic and as less affected by interference as possible.
For this reason, we leveraged the Colosseum testbed to meet
both requirements. In Colosseum, Commercial Off-The-Shelf
(COTS) software can be deployed and run remotely; at the
same time, the radio frequency channel is emulated, and real-
world wireless communications can be elaborated while being
protected from interference. Thanks to the Massive Channel
Emulator (MCHEM) [39], Colosseum is a large-scale wireless
network emulator, originally designed and deployed to support
DARPA’s spectrum collaboration challenge in 2019. Colos-
seum servers and USRP SDRs allow researchers to experiment
with wireless software and protocol stacks; in particular, Colos-
seum has already been employed for mobile networking with
srsRAN [40].
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Fig. 6. Modifications to Colosseum for OpenWiFi devices.

On the other hand, the strict timing requirements of 802.11
channel access mechanisms such as CSMA prevent the com-
pliant implementation of the 802.11 stack with SDRs [41]. In
particular, 802.11 requires the reception of an acknowledge-
ment packet for each frame sent, within 10 µs from the frame
successful transmission. To this end, we leveraged a Xilinx
ZC706 [42], a SoC board fully supported by the OpenWifi
project [14]. We worked with the Colosseum management team
to deploy a hardware extension of Colosseum for working with
WiFi nodes, depicted in Figure 6. This extension opens up new
experiment opportunities for the whole research community
working with 802.11 and spectrum sharing. The combination
of the ZC706 and OpenWifi allows Colosseum to support fully
compliant WiFi devices and communications.

As far as data collection is concerned, we collected three
groups of spectrum data, namely background noise (clear), LTE
data traffic, and WiFi data traffic. The data captures the general
characteristic of LTE and WiFi transmissions, abstracting from
the actual transmitted information, and throughput. We used
srsRAN for cellular communications and OpenWifi for 802.11.
We collected four classes of data:

1) Network with Idle traffic;
2) Continuous high-throughput traffic (iperf3, 1Mbps);
3) bursty high-throughput traffic (ping flooding, 1KB size);
4) bursty low-throughput traffic (ping, packets of 300 bytes).
The first class of data is meant to allow the DNN to learn

of possibly idle base stations or access point that are not
transmitting, but that could be potentially impacted by ChARM
activity. The second and third class of data are meant to rep-
resent generic transmissions of random data. The fourth class
is similar to the third, and it is used only for experiments as
an evidence that ChARM is not over-fitting over a particular
class of communication patterns, but it is able to extract the
crucial wireless technology characteristics from the I/Q sam-
ples. Overall, the collected dataset consists of 172.8 GB of data,
representing 43.2 billions of I/Q samples, and 18 minutes of
communications. Note that we are not collecting samples for
the “unknown” class. During data collection, we configured
Colosseum to work at 5.24 GHz, and we used five of its nodes
(two for LTE communication, two for WiFi communication,
and another for data recording).

V. EXPERIMENTAL EVALUATION

This section is logically divided in three parts. First, we
present in Section V-A the experiments which have led to the
ChARM DNN design for technology classification. Secondly,
we showcase the ChARM prototype performance in the con-
trolled Colosseum emulator environment in Section V-B. In
particular, we detail the main features and behaviours ChARM
can offer to mobile networking spectrum sharing. Lastly, we
demonstrate the developed prototype of ChARM on an over-the-
air, real-world environment through the use of the Arena testbed
in Section V-C.

A. DNN Training and Testing Procedures

As far as the training of the DNN is concerned, we adaptively
stop the DNN training iterations whenever no sensible progress
is gained for a large number of epochs. At the end, we save
the network parameters with the best validation results. As in
previous related research [35], we find the Adam optimizer to
be a stable and effective choice, and we use it through our work.
We split our dataset (described in Section IV-B) in the following
way: 50% for training, 25% for validation, and 25% for testing.

Test-α dataset and α selection. The ES method employed
on the DNN for the abstain class requires the parameter selec-
tion for α (see Section III-C). We create a new dataset, called
test-α, consisting of the test set plus a combination of LTE
traces, representing LTE interference (the latter accounting for
the 25% of test-α). While the test dataset is used to evaluate
the accuracy of the resulting DNNs, the test-α dataset is used



to tune the parameter α. Specifically, after we train our model
using the training set, checking the accuracy on the validation
set, we compute the value of αwhich grants the higher accuracy
score on the test-α dataset, and we use it consistently with our
model when evaluating the test set.

Model Selection. Our investigation focuses on residual net-
works (RNs) and convolutional neural networks (CNNs). Since
our prototype senses a bandwidth of 20 MHz, it receives a
stream of 20M I/Q samples per second from the sensing radio.
Therefore, when the DNN input size is 2,000, it represents one
tenth of millisecond of communication, and, when it is 20,000,
it represents one millisecond. Table II shows the two DNN
architectures used throughout the paper, which were inspired
by the work presented in [43].

TABLE II
TWO DNN NETWORK LAYOUTS USED IN THIS WORK. CNN

ARCHITECTURE (A) AND RN ARCHITECTURE (B).

A)

Layer Output dim.
Input 2 x 20000
Conv (ReLU) 7 x 20000
MaxPool 7 x 10000
Conv (ReLU) 7 x 10000
MaxPool 7 x 2000
Conv (ReLU) 7 x 2000
MaxPool 7 x 1000
Conv (ReLU) 7 x 1000
MaxPool 7 x 200
Conv (ReLU) 7 x 200
MaxPool 7 x 100
Conv (ReLU) 7 x 100
MaxPool 7 x 20
Conv (ReLU) 7 x 20
MaxPool 7 x 10
FC/Tanh 18
FC/Tanh 16
FC/Softmax 3

B)

Layer Output dim.
Input 2 x 20000
ResidualStack 4 x 10000
ResidualStack 4 x 2000
ResidualStack 4 x 1000
ResidualStack 4 x 200
ResidualStack 4 x 100
ResidualStack 4 x 20
ResidualStack 4 x 10
FC/Tanh 16
FC/Tanh 16
FC/Softmax 3

We first evaluate how CNN and RN approaches perform
against each other. Figure 7 shows the trade-off between input
size and achieved accuracy by RN and CNN. In these exper-
iments, we vary the number of hidden layers of the models
according to the input size to grant always the finest degree
of analysis (i.e., we do not increase the kernel size of the
convolutional layers). During these experiments, RNs perform
consistently better than CNNs and can reach an accuracy of
99% on our validation set. As expected, higher accuracy cor-
responds to a larger input size. We notice that 20,000 samples
is representative enough to reach almost perfection on the
validation set, without excessively impacting the processing
time (sensing time is 1 millisecond, and processing time in the
same order of magnitude). For the sake of clarity, the results
shown here relate to RNs and CNNs with comparable number
of parameters (about 3,000). The two network architectures
achieving the highest accuracy are shown in Table II.

After selecting the network architecture and training the
models, we tune the α parameter. Figure 8 presents an analy-
sis for parameter selection on the previously most successful
models. The RN model achieves the best results with α = 0.7,
while the CNN model requires α = 0.9. This difference
means that RN is more confident on its prediction, hence, it
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requires less account for uncertainty. Overall, the RN model
obtains better performance and, for this reason, we select RN
as our architecture of choice for ChARM. Figure 9 shows
the performance variation when keeping input size to 20,000
while varying the number of layers, meaning opting for larger
convolutional kernels. Results show there is little appreciable
variation, except for the number of parameters, which increases
with larger kernels. Our best RN model (architecture shown in
Table II-B, α = 0.7) scores an accuracy of 96.4% on the test set.
Table III shows the resulting confusion matrix for our model,
and Table IV confirms that it is not biased toward any class.

B. Sensing and Reacting

In this section, we demonstrate the spectrum optimization ca-
pabilities of ChARM. Specifically, we test ChARM in a controlled
environment, so to be able to (i) emulate corner spectrum condi-
tions, and (ii) obtain repeatable results. We leverage Colosseum
since it enables fine-grained control over the wireless environ-
ment. In this section, we demonstrate that:
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TABLE III
CONFUSION MATRIX OF OUR DNN ON THE TEST SET.

Clear LTE WiFi Unknown
Clear 87,202 (32.3%) 2 (0%) 110 (0%) 2,686 (1%)
LTE 3 (0%) 88,908 (32.9%) 104 (0%) 985 (0.4%)
WiFi 577 (0.2%) 152 (0.1%) 84,066 (31.1%) 5,205 (1.9%)



TABLE IV
RECALL, PRECISION AND F1 MEASURES FOR OUR DNN ON THE TEST SET.

Technology Recall Precision F1
Clear 0.9689 0.9934 0.981
LTE 0.9879 0.9983 0.9931
WiFi 0.9341 0.9975 0.9648

(a) ChARM can detect interference with its communication,
(b) it can perform a handover of the existing mobile commu-

nication to a difference frequency,
(c) it changes its mode to co-existence if switching to an

already occupied frequency, and
(d) its choices of frequency and whether to enable co-

existence are close to the optimum (for a given policy).
The experiments starts with the RU transmitting on the unoc-

cupied 5.18 GHz channel, along with other two transmissions
on 5.22 and 5.24 GHz. LTE and WiFi transmissions were
recorded using Colosseum (4th class of the dataset, not used
for training/validating/testing of the model) and are used in
place of real nodes to make the experiment finely-controlled
and reproducible. During the duration of the experiment, we
keep an active communication between the ChARM BS and
a srsRAN UE using a ping session. We log such continuous
communication to check whether data is lost due to interference
and handovers. We conduct extensive experimentation using
Colosseum, varying the number of nodes and transmissions to
stress ChARM. Here, we present results from two sessions that
highlight all ChARM aspects, demonstrating claims (a)-(d).

5.18

5.20

5.22

5.24

 0  10  20  30  40  50  60  70

(1)

(2)

Fr
eq

ue
nc

y (
GH

z)

Time (s)

ChARM-coex
ChARM

LTE
WiFi

Fig. 10. Frequency occupancy during an experiment on Colosseum. Reported
transmission classes are the ground-truth. Arrows indicate the triggering of
handovers. The policy used is based on Table I-A

Figure 10 shows the channel transmissions during one of the
experiments. Around the 24th second, an interfering WiFi trans-
mission starts at frequency 5.18 GHz, the same that ChARM is
using. It takes a few seconds – i.e., the overlapping boxed area
in Figure 10 – for ChARM to detect interference and trigger a
handover, indicated by arrow number 1. The detection of inter-
ference demonstrates claim (a), while the 3GPP standardized
inter-cell handover guarantees continuity of the data commu-
nication between ChARM and the attached UE, demonstrating
(b). ChARM handovers to frequency 5.2 GHz, which according
to the policy defined by Table I-a, is the best choice, and does
not require a co-existence mechanism. Around the 52nd second,
an interfering LTE transmission starts on the same frequency

as ChARM. After a few seconds – shown in Fig. 10 with the
second overlapping area – ChARM correctly detects interference
with another LTE network and triggers a handover, indicated by
arrow number 2. Claims (a) and (b) are further demonstrated,
as ChARM detects the interference (a) and seamlessly perform a
3GPP handover (b). In this case, since there are no unoccupied
frequencies among those under evaluation, ChARM follows the
policy in Table I-a and switches to 5.24 GHz. Since ChARM
detects an existing WiFi communication there, it activates the
co-existence mode, hence demonstrating claim (c). It is worth
noting that the choices performed by ChARM are optimal with
respect to the policy. Besides the intervals for which the delay
in channel sensing prevents the correct classification of chan-
nel occupancy, ChARM detects the correct underlying traffic,
it switches to the expected frequency given the policy, and
it activates the appropriate co-existence mode when needed,
demonstrating claim (d).
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Fig. 11. ChARM DNN frequency classification through the experiment. Arrows
indicate the triggering of handovers.

While Fig. 10 presents the objective development of the
experiment, we show in Fig. 11 the classification outcomes of
the DNN throughout the experiment. Specifically, we notice
the interference detection, determining the triggering of the
handovers (1,2), and some misclassification of LTE and WiFi
communications as unknown technologies.

TABLE V
CONFUSION MATRIX FOR CHARM CLASSIFICATION DURING AN

EXPERIMENT.

Clear LTE WiFi Unknown
Clear 30 (11.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
LTE 2 (0.7%) 106 (39.6%) 0 (0.0%) 14 (5.2%)
WiFi 0 (0.0%) 0 (0.0%) 76 (28.4%) 13 (4.9%)
Intrf 0 (0.0%) 8 (3.0%) 17 (6.3%) 2 (0.7%)

Table V presents the performance of the DNN during the
experiment in terms of classification confusion matrix. As
expected, the main source of misclassification stems from un-
certainty in the interference and the abstain classes. Figure 12
presents another run showing the flexibility of ChARM, where
Table I-b is enacted. In the spirit of O-RAN networks, we
demonstrate that a simple change in the policy determines the
preference of ChARM for co-existing with LTE technologies in
place of WiFi, without any significant structural change.
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Fig. 12. Frequency occupation during an experiment on Colosseum. Reported
transmission classes are the ground-truth. Arrows indicate the triggering of
handovers. The policy used is based on Table I-B.

C. Over-the-air Experimental Evaluation on Arena

We leveraged the Arena testbed [15] to perform over-the-
air testing of ChARM. Arena is a remotely accessible and
open test-bed made up of 64 SDRs and 8 servers designed
for experimenting with 5G-and-beyond spectrum research. It
allows the deployment and testing of communication platforms
in a real office environment during working hours, subject to all
sort of ISM interference. The antennas are installed in a large
shared office, displaced along a grid, as represented in Fig. 13.
The positioning in the grid of the nodes used in the experiments
is also shown in the figure.

Fig. 13. Location of the wireless nodes in the Arena testbed.

While Colosseum allows experimenting in a fully controlled
environment, Arena allows the testing of our system in a more
realistic and challenging environment. Figure 13 presents the
deployment of ChARM in Arena, including the location of the
LTE and WiFi transmitting nodes. We choose 5.24 GHz as the
center frequency. To generate the LTE and WiFi traffic, we
use the traffic traces from our dataset. While the experiments
on Colosseum show the behavior of ChARM and its ability to
optimize the spectrum use, the experiments on Arena validate
that the DNNs are still effective in a real-world environment.
We emphasize that no data has been collected on Arena and
used for the training of our model.

To compensate the path loss in Arena with respect to Colos-
seum, the transmissions are amplified by 10 dB. For the targeted
LTE and WiFi transmission configurations (in terms of band-
width parameters, LTE physical channel allocation, and WiFi
modulation scheme) and transmission power, results shown in
Fig. 14 confirm that ChARM can reliably detect the technologies
obtaining an accuracy of 85%. Variations in the transmission
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LTE WiFi Clear Unkn.

Fig. 14. Sensing experiment on the Arena test-bed at 5.24 GHz, with 20 MHz
of bandwidth. We play out LTE and WiFi communication recordings (indicated
as Real transmissions) and verify ChARM classification (sensed).
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configuration or abrupt changes in the transmission power can
however reduce our classifier performance, as shown in Fig. 15.
Thus, it is important to tune the DNN training with respect
to the target environment characteristics, and future work will
investigate how online training can be used to automatically
tailor the performance of ChARM.

VI. CONCLUSIONS

In this paper, we have proposed Channel-Aware Reactive
Mechanism (ChARM), a data-driven O-RAN-compliant frame-
work that allows (i) sensing of the spectrum to understand
the current context and (ii) reacting in real time by switching
the distributed unit (DU) and RU operational parameters ac-
cording to a specified spectrum access policy. It is designed
to operate within the O-RAN specifications, and can be used
in conjunction with other spectrum sharing mechanisms. We
demonstrate the performance of ChARM in the context of spec-
trum sharing among LTE and Wi-Fi in unlicensed bands, where
a controller operating over a RAN Intelligent Controller (RIC)
senses the spectrum and switches cell frequency to avoid Wi-
Fi. We develop a full-fledged standard-compliant prototype of
ChARM using srsRAN, and leverage the Colosseum channel
emulator to collect a large-scale waveform dataset to train our
neural networks with. Experimental results show that our neural
networks achieve accuracy of up to 96% on Colosseum and
85% on Arena, demonstrating the capacity of ChARM to fully
exploit the considered spectrum channels.

The authors have provided public access to their code at
https://github.com/lucabaldesi/charm code and to their dataset
at http://hdl.handle.net/2047/D20423481
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