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ABSTRACT

Subsequence matching in time series databases is a useful tech-
nique, with applications in pattern matching, prediction, and rule
discovery. Internal structure within the time series data can be used
to improve these tasks, and provide important insight into the prob-
lem domain. This paper introduces our research effort in using the
internal structure of a time series directly in the matching process.
This idea is applied to the problem domain of respiratory motion
data in cancer radiation treatment. We propose a comprehensive
solution for analysis, clustering, and online prediction of respira-
tory motion using subsequence similarity matching. In this system,
a motion signal is captured in real time as a data stream, and is
analyzed immediately for treatment and also saved in a database
for future study. A piecewise linear representation of the signal is
generated from a finite state model, and is used as a query for sub-
sequence matching. To ensure that the query subsequence is repre-
sentative, we introduce the concept of subsequence stability, which
can be used to dynamically adjust the query subsequence length.
To satisfy the special needs of similarity matching over breathing
patterns, a new subsequence similarity measure is introduced. This
new measure uses a weighted L, distance function to capture the
relative importance of each source stream, amplitude, frequency,
and proximity in time. From the subsequence similarity measure,
stream and patient similarity can be defined, which are then used
for offline and online applications. The matching results are ana-
lyzed and applied for motion prediction and correlation discovery.
While our system has been customized for use in radiation therapy,
our approach to time series modeling is general enough for appli-
cation domains with structured time series data.

1. INTRODUCTION

Modeling and analysis of time series stream data is a rich and
rapidly growing research field. Time series stream data often arise
when following industrial processes, monitoring patient treatments,
or tracking corporate business metrics. Analysis of time series
stream data is widely used for many applications such as economic
forecasting, stock market analysis, process and quality control, bud-
getary analysis, and workload projections. In database research,
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there has been an explosion of interest on time series databases.
Many high level representations of time series [4, 5, 7, 11, 14, 17,
22, 27], and distance functions for subsequence matching [1, 7, 23,
25] have been proposed. Subsequence matching methods that try to
find subsequences similar to a query sequence within a large time
series databases have attracted recent interest and many solutions
have been proposed [1, 4, 7, 15, 16, 19, 23, 25].

However, far less attention has been paid to the internal structure
within the data. Many time series display periodic fluctuations. For
example, temperature of a region tends to peak in the summer and
then declines in the fall. It reaches the lowest in the winter and then
climbs up in the spring. So time series of temperature of a region
will typically show the periodical seasonal changes. Periodicity is
also quite common in economic time series and some medical time
series. In addition to periodicity, there are other non-periodic struc-
tures in time series, such as trends, correlation and autocorrelation
among time series data streams. An example is a plateau with ex-
ponential growth.

The internal structure gives meaning to a time series, which allows
for a more accurate forecast. However, structured data generally
contains random noise which makes it difficult to analyze a time
series. Randomness cannot be predicted and it limits the certainty
of future prediction.

Previous research on subsequence matching over structured time
series data has not explicitly considered the meaning of the time
series data and its influence over similarity matching. The internal
structure and its meaning should be modeled and analyzed for two
reasons. First, a model can be used in forecasting and monitoring
a time series. Second, it helps to obtain an understanding of the
underlying forces and structure that produced the corresponding
time series.

This paper introduces our research effort in modeling, analysis,
clustering and prediction of motion with structured time series data
using subsequence similarity matching. In our research we con-
sider the internal structure of a time series, the underlying meaning
of the structure and the influence of the structure in subsequence
matching. The data in our research is tumor respiratory motion
stream data from image guided radiation therapy, which is one ex-
ample of structured time series data. Although the solution is cus-
tomized for tumor motion, our approach can be applied to other ap-
plication domains with structured time series patterns. Following is
a brief background introduction of this problem domain including
the motivation and challenges for respiratory motion analysis.
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Figure 1: Respiration gating and latency.

Radiation therapy is a common treatment for cancers in the thoracic
and abdominal regions. The goal of radiation therapy is to ensure
precise radiation delivery to kill tumor cells. To avoid side effects,
radiation to surrounding healthy tissues and critical structures must
be minimized. However, the quality of radiation treatment is com-
plicated by respiratory motion. As a patient inhales and exhales,
tumors in the thoracic and abdominal regions move according to
the breathing patterns. Therefore, effective radiation treatment of
a moving tumor requires an adequate understanding of the motion
characteristics.

In the medical literature, several strategies to compensate respira-
tory motion have been proposed, including respiration gating and
beam tracking [12]. Respiration gating delivers radiation doses
only when the tumor is in a predetermined location. It has a gating
window for the radiation treatment beam, as shown in Figure 1. The
tumor may move in or out of the gating window, and treatment is
delivered when the tumor is in the gating window. Beam Tracking
is another alternative method for precise dose delivery, in which the
radiation beam follows the tumor dynamically. Both require online
prediction of tumor position, primarily due to system latency and
imaging rate.

System latency is the time interval between the time when the tumor
is at a certain location and the time when the radiation beam can be
turned on for treatment at that location. System latency is always
an issue because of the time needed for image acquisition, image
processing, and radiation system processing. Precise dose delivery
is heavily impacted by system latencies. If treatment is based on the
last observed position rather than the current position, this latency
will reduce the effectiveness and efficiency of treating a moving
tumor. Figure 1 illustrates the effects of system latency on gated
treatment. The ideal treatment is the radiation beam on/off signal
without any system latency. The real treatment is the treatment
signal, without consideration of any system latency (total system
latency is At), which treats the tumor at the last observed position.

The imaging rate is the number of images taken in a given time
period. It is governed by radiation safety limits. Only a limited
number of diagnostic images are allowed to be collected, because
excess imaging is toxic to healthy tissue. However, knowledge of
the true tumor positions is crucial for effective real time radiation
therapy. Thus tumor position between two adjacent measurements
needs to be predicted, especially when the sampling rate is low.

The first goal of this research is to predict tumor motion in real-
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Figure 2: Prediction based on limited data.

time. There are a number of technical hurdles that must be over-
come to be successful. First, respiratory motion is patient specific.
Simply using another patient’s breathing pattern to predict the cur-
rent patient’s tumor motion is not satisfactory. On the other hand,
there is only limited data that can be used if prediction is based
solely on the historical data of the same patient. Second, respira-
tory motion can be very complicated to predict, even for the same
patient. The motion is non-uniform between two adjacent mea-
surements, which can be observed in Figure 2. Furthermore, tu-
mor motion varies from one breathing period to another, and can
include frequency changes (duration changes for different breath-
ing cycles), amplitude changes (spatial position changes of a tumor
during breathing), base line shifting (tumor position changes at the
end of exhale), or combinations of these effects. This is illustrated
in Figure 3a and b. Third, the raw tracking signal is very noisy, as
manifested in Figure 3c and d, which includes two kinds of noise:
one is cardiac motion (tumor motion due to heart beat) and the
other is spike noise. Cardiac motion is a major contributor to noise
by adding short-term oscillations to long term breathing signals.
Spike noise is an artifact of the data acquisition process and exists
in both regular and non-regular breathing.

The second goal of this research is to find a correlation between
respiratory motion and patient physiological conditions. If such a
correlation can be reliably established, it will provide multiple ben-
efits. On one hand, tumor motion prediction can then be guided
by a patient’s physiological condition and changes to that condi-
tion. Alternatively, motion patterns can help to identify changes
in a patient’s physiological condition. One example is the corre-
lation between respiratory motion and common pulmonary (lung)
pathology.

However, finding potential correlations between patient informa-
tion and respiratory motion is a very difficult task. A patient’s
physiological information includes patient characteristics (e.g., sex
and age of the patient), a patient’s physical condition (e.g., cough
or fever), past historical treatment data (e.g., medications), tumor
characteristics (e.g., tumor size and location, and whether the tumor
is a primary occurrence, recurrence or metastasis tumor), and treat-
ment conditions (e.g., the marker position and marker size). Also, it
is required that the correlation must be flexible enough to compen-
sate for changes in amplitude and frequency during the treatment,
which makes correlation discovery more challenging.

Although recently there are research efforts in characterization and
prediction [3, 20, 24, 26], the best parameterization for respiratory
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Figure 3: Complex tumor motion. (a) with amplitude and frequency changes, (b) with base line shifts, amplitude and frequency
changes, (c) with cardiac motion, (d) with cardiac motion and spike noise.

motion analysis and prediction remains an open question. Subse-
quence similarity is an ideal technique because it has advantages for
pattern matching, future movement prediction, rule discovery and
computer-aided diagnosis. So we propose a solution using subse-
quence similarity matching for tumor respiratory motion analysis,
correlation discovery and motion prediction. Our solution has ad-
dressed the special concerns for medical problems, and is suitable
for both online and offline applications. Our main contributions are
the following:

e We introduce a new concept, subsequence stability, to evalu-
ate the qualitative representativeness of a given subsequence.
We adopt a flexible criteria to generate query subsequences
online. The length of a query subsequence is dynamically
adjusted based on the subsequence’s stability of the most re-
cent motion.

e \We propose a model-based, multi-layer, weighted, and para-
metric subsequence similarity measure, which takes into ac-
count specific concerns for both online and offline respiratory
motion analysis. This subsequence similarity measure can be
generalized to other applications by adjusting parameter val-
ues.

o \We define distance functions between whole streams and pa-
tients for motion analysis. They are defined based on subse-
quence similarity and they provide a convenient way to cor-
relate tumor motion with other patient information.

o \We analyze similarity matching results for tumor motion pre-
diction used during image-guided dynamic radiation treat-

ment and correlation discovery. The statistical results are
valuable both in treatment planning and physiological diag-
nosis, which will result in better care for cancer patients.

o \We generalize our solution for tumor motion analysis to other
application domains. The generalized framework can be ap-
plied to any motion with structured time series data, which
can be described by a finite set of linear states.

This paper is organized as follows: Section 2 reviews related work.
Section 3 will briefly introduce a finite state model for tumor mo-
tion and our hierarchical data structure. Our online subsequence
similarity matching algorithm is discussed in section 4. In this sec-
tion we describe query subsequence generation, a new subsequence
similarity measure, and a new online motion prediction algorithm.
An offline data analysis approach is discussed in Section 5. In this
section we define stream similarity and patient similarity based on
subsequence similarity. In Section 6, we generalize the similarity
matching method to other domains. Section 7 presents performance
results for each application. The last section concludes the paper
and discusses directions for future work.

2. RELATED WORK

In this section, we discuss relevant work on similarity matching
in the database community and work on respiratory motion anal-
ysis in the medical community. Similarity searching in time se-
ries data is used in many data mining applications. Agrawal et
al. [1] introduced whole sequence similarity matching. Faloutsos et
al. [7] performed subsequence similarity matching using a Discrete



Fourier Transformation (DFT). Moon et al. used generalized win-
dows to reduce false negatives [19]. Other feature extraction func-
tions, such as the Discrete Wavelet Transformation (DWT) [4, 11],
Adaptive Piecewise Constant Approximation (APAC) [14], Piece-
wise Aggregate Approximation (PAA), and Single Value Decom-
position (SVD) [17] have been proposed to reduce the dimension-
ality of time series data. Dimensionality of time series refers to
sequence length. New distance functions such as Dynamic Time
Warping [22, 27] and Longest Common Subsequences [5] have
been explored to overcome the brittleness of the Euclidean distance
measure or its variations [1, 7, 23].

There is extensive research activity in the database community on
data streams. Some recent papers include [2, 6, 8, 9, 10, 13, 18, 21,
28]. But most research on streams focuses on basic statistics and
on how to define and evaluate continuous queries, which is different
from the focus of our work. Wu et al. [25] combines subsequence
similarity matching with data streams, but on financial data, which
has very different characteristics from tumor motion.

In the medical community, tumor respiratory motion has recently
been studied in image-guided radiotherapy. An integrated radio-
therapy imaging system has been designed for patient setup and for
tumor motion localization [3]. A waveform model using a concept
called the average tumor trajectory can synchronize the moving
radiation beam [20]. A finite state automaton and a piecewise lin-
ear representation (PLR) of tumor motion has been proposed to
capture the natural breathing actions [26]. Commonly used pre-
dictive methods to compensate respiratory motion have been eval-
uated [24]. The best parameterization for respiratory motion anal-
ysis and prediction remains an open question.

In this paper, we present our approach to online subsequence match-
ing for tumor motion data. We process the data stream online to
produce a piecewise linear Representation (PLR) of raw streams
based on a finite state model. The length of a query subsequence
is dynamically adjusted based on a new concept, subsequence sta-
bility, rather than using a fixed length. Our subsequence similar-
ity measure has addressed the specific requirements for respiratory
motion analysis by a model-based, multi-layer, weighted, and para-
metric distance function rather than using other partially weighted
distance functions [16, 25]. In addition, we have developed new
definitions for whole stream and patient similarity based on subse-
quence similarity, which is a departure from previous schemes that
used whole sequence similarity measures.

3. MOTION MODEL AND DATA MODEL
In this section we will first briefly introduce the tumor respiration
motion model used in our work. Then we will describe in detail
our new data model that can be applied to a stream database, and
which is suitable for both online and offline subsequence similarity
matching for tumor motion analysis.

3.1 Motion Model

Due to the sheer volume and the noisy signal nature of raw data,
it is impractical to determine subsequence similarity on raw data.
A good data representation is needed to reduce the dimensionality
(sequence length) of the raw data and to smooth noisy signals. We
have adopted a finite state model [26] as the base for our data model
and subsequence similarity matching. The rationale for adopting
this model will be discussed after a brief introduction of the model.

The finite state model is illustrated in Figure 4. As a patient inhales

or exhales, a tumor moves in a periodic pattern. These motion pat-
terns are modeled using three regular breathing states: exhale (EX),
end-of-exhale (EOE) and inhale (IN), and one irregular breathing
state (IRR). The transition from one state to another is guided by
the finite state automaton (FSA), as illustrated in Figure 4b. In a
regular breathing, motion proceeds from state to state in a fixed
order:

...> EX = FEOFE = IN = EX = ...

The IRR state is entered during irregular breathing, and is left when
regular breathing resumes. Examples of identifying these states are
illustrated in Figure 4c and d.

We adopt this finite state model because the model has several ad-
vantages in addressing the special concerns for subsequence simi-
larity matching over respiratory motion. First, the model is based
on the natural understanding of breathing motion and the require-
ments of motion compensated treatment. Each of these states cor-
responds to a natural action: EX is the motion due to lung deflation,
EOE is the motion for rest after lung deflation, and IN is the motion
due to lung expansion. Therefore subsequence matching based on
this representation matches the problem domain.

Second, this model produces a piecewise linear representation (PLR)
of the raw data. The PLR reduces the size of the raw data, lowers
the dimensionality of a subsequence, and filters out noise.

Third, this model also provides an online algorithm [26] to generate
the PLR segments in a streaming way, which serves a good starting
point for real-time tumor motion prediction. The online algorithm
can detect the current state and line segment in real time.

Finally, PLR sequences allow one to define different application-
specific distance measures between two time series. Also we can
place different relative importance on subsequence sources, ampli-
tudes, frequency changes, and proximity in time, as required by
respiratory motion analysis.

3.2 DataModéd

A patient has multiple treatment sessions, and each session can
yield multiple motion streams. Thus a patient has multiple streams.
We propose a hierarchical data model for our stream database based
on the PLR segments of the finite state model. This data model in-
cludes the corresponding stream relationship of the clinical proce-
dure and satisfies the special requirements for subsequence match-

ing.

The database is composed of a set of patient records. Each patient
record has a set of data streams. Each stream has an ordered list of
connected line segments, which is represented by an ordered list of
vertices (a vertex is the intersection of two adjacent line segments).

Each vertex v; is represented by three elements:
(tiv Ti, si)

The vertex time t; both denotes the start time of a line segment
(beginning with the vertex) and the end time of the previous line
segment (terminated with the vertex). The space position of v; is
denoted z;. Since measurements of tumor motion have different
spatial dimensionalities, we have proposed an approach that can
work for any n-dimensional space. Thus z; can be an n dimen-
sional point. Last, s; is the breathing state (i.e., EX, EOE, IN or
IRR) of the line segment beginning with vertex v;. This motion
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Figure 4: Tumor motion modeling (the motion is shown in one dimension, but the model can be used for multi-dimensional mo-
tion). (a) Three states of a regular breathing cycle, (b) Finite state automaton for respiratory motion, (c) Regular motion and the
corresponding PLR segments, (d) Irregular motion and the corresponding PLR segments.

dimensionality refers to spatial motion, i.e., 1-D, 2-D and 3-D res-
piratory motion. Only one spatial dimension is shown in Figure
4. (Spatial dimensionality of tumor motion is orthogonal to and
should not be compared with sequence dimensionality.)

With this data model, a breathing state corresponds to a single line
segment. The state is stored in its beginning vertex. This data
model is effective in capturing the features we need for tumor mo-
tion subsequence matching.

4. ONLINE SUBSEQUENCE MATCHING
In this section, we will discuss the issues for online subsequence
similarity matching, including dynamic generation of a query sub-
sequence, special concerns for subsequence similarity measures,
and medical applications which can benefit from our method.

4.1 Dynamic query subsequence generation
For real-time applications, query subsequences must be generated
in an online fashion and must provide an accurate representation of
the target’s current moving condition. Thus, a query subsequence
must be the most recent part of a motion stream.

But how do we determine the appropriate length of the query sub-

sequence? Shorter query subsequences lower the quality of the
representation of the current motion characteristics. Longer query
subsequences require additional computation and introduce longer
delay. There is a tradeoff between response time and the length of a
query subsequence. To address this problem, we propose a flexible
scheme to adjust the query subsequence length dynamically based
on subsequence stability, which is defined as:

DEFINITION 1. (Subsequence Stability) Given a subsequence
S = [(t1,21,51), .., (tn, Zn, )], S is stable if p(S) < pe,
where p. is a predefined parameter and p(.S) is computed by the
following formula:

3 n
1 _
p(S) = — > Y (@] |mit — @] — ATy |
k=0 i=1,s;=k

+B8 | (bit1 —t;i — Atg) | )

where k=0, 1, 2, 3 for each state EX, EOR, IN or IRR, and the
inner sum is computed over line segments from vertex v; t0 v;41,
where s; =k as indicated. Aty is the average time interval in S for
state k, and A%y, is the average amplitude of S for state k. o and
3 are different weights for amplitude and frequency changes. p(S)
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is called the stability of S. The smaller p(.S) is, the more stability S
has.

The more stable the most recent subsequence is, the shorter the
query subsequence will be. The length of the query subsequence
is between the user specified minimum length L,,;, and the maxi-
mum length L. For example, in Figure 5a, Ly, =3 and Lyqz
= 8 breathing cycles. We use a stability checking strip to determine
the length of the query subsequence. A stability checking strip is
a window of fixed size Lyin, moving from the most recent por-
tion back to historical data. The subsequence stability of the strip
is checked after each move to determine the start point of a query
subsequence. As illustrated in Figure 5, in the beginning, the strip
covers the subsequence of the most recent Ly, Vertices. The sta-
bility of that subsequence is checked. If the subsequence is stable,
the strip halts. If not, the strip will move one vertex back to history
data, and stability on the new strip is checked again. This will go
on until one of the two conditions is met: a stable subsequence is
found (Figure 5a), or there are L,,q, Vertices for the query subse-
quence (Figure 5b). The query subsequence is from the beginning
vertex of the last strip to the most recent vertex. As a consequence,
breathing with high regularity will have shorter query sequences,
while breathing with low regularity tends to have longer query sub-
sequences.

4.2 Online subsequence similarity

Subsequence matching over respiratory motion is very challeng-
ing because there are some special concerns for motion similarity
comparison. The first special concern is the consideration of the
meaning of a subsequence. Similar subsequences must have the
same meaning. For tumor respiratory motion, the states of a sub-
sequence defines its meaning. A pair of similarity subsequences
must correspond to the same natural actions, such as exhaling and
inhaling. Intuitively, a sequence that starts with an inhale cannot be
compared with one that starts with an exhale.

The second special concern is the consideration of the source of the
comparison subsequences. A patient has multiple treatment ses-
sions. Each session produces a data stream. Subsequences from
the same session are the most important. Subsequences from dif-
ferent sessions of the same patient are less important than those
from the same session, though they are more important than those
from a different patient.

Third, online subsequence similarity should have weighted impor-
tance over past data according to the proximity in time. In other
words, recent data are given relatively more weight in defining sim-
ilarity than the older data.

Finally, two similar subsequences should have limited flexibility for
amplitude rescaling and frequency elasticity. Breathing motion is
complicated. Two patients rarely breathe with the same amplitude
and same frequency. Even for the same patient, there are variations
from one breathing cycle to another. Both amplitude and frequency
differences should be limited by certain thresholds.

There have been many research efforts for efficient similarity search
based on Euclidean distance or its variations [4, 7, 15, 19, 23], Dy-
namic Time Warping distance [22, 27], or Longest Common Sub-
sequence distance [5]. However, to the best of the authors’ knowl-
edge, existing subsequence similarity measures either are too gen-
eral to address the above special requirements, or only meet part
of them. For example, Euclidean distance is sensitive to conditions
such as offset translation and amplitude scaling. The weighted dis-
tance used in [16] assigns a relative importance to each individual
linear segment. But they did not consider frequency changes. The
weighted distance used in [25] considered different weights over
amplitude and frequency changes, but it does not assign different
weights to different line segments based on proximity to an event.
Furthermore, none of these studies have used weights to address
the significance for the source streams of the corresponding subse-
quences and none have discerned the meaning of a sequence.

So a new similarity measure is required to address all these spe-
cial concerns. We hereby propose such a model-based, multi-layer,
weighted, and parametric subsequence similarity measure based on
the PLR stream, which addresses the special concerns of respira-
tory motion stream similarity comparison, yet is still applicable for
subsequence similarity in other domains.

DEFINITION 2. (Online Subsequence Similarity) Two subse-
quences with the same length n:

S1 = [(t11, %11, $11), ey (B1ns T1n, S1n)]

Sa = [(t21, @21, 821), .-y (B2, T2n, S20)]

are similar if they satisfy the following conditions:

1. The states of S; and S> are the same, i.e.,
815 = 824, fori = 1, 2, -y .

2. ds(S1,S52) < 4, where d,(S1, S2) is the weighted online
subsequence distance function defined as:

n—1 n—1
do(S1,52) = ﬁ a > (wiAz)+83 (wi - Aty)
s i=1 i=1



where

Az = | |$1(i+1) — x| — |$2(i+1) — T3] |

Ati = | (t141) — t1i) — (B2git1) — t2i) |

and « and g are the different weights for the amplitude and
frequency, w; is the weight for vertex i, and w; is the weight
between the two subsequences.

This similarity definition has addressed the special concerns in res-
piratory motion matching. Condition 1 ensures that the correspond-
ing subsequences have the same natural physiological actions. That
is one big advantage of using the piecewise linear representation
based on the finite state model.

In condition 2, ws gives different weights for subsequences of dif-
ferent patients. For example, similar subsequences from the same
session of the same patient are the most valuable, and thus has the
largest ws. And w; is the smallest when the two compared subse-
quences come from different patients.

Different values of « and 3 provide a tradeoff in the relative impor-
tance of amplitude and frequency. In our applications, we always
have o > [ to ensure that the amplitude has more significance than
the frequency.

The weight w; assigns different levels of importance to different
portions of the compared subsequences. The more recent fragments
more closely represent the current pattern, and have more influence
on future move prediction with a larger w;. In our research, w; is a
function of the query subsequence. For a given query subsequence:

Q = [(t1,21,81), -, (tn; Tn, Sn)]
The weight for vertex v; is computed as follows:
tho1 —t1
T X1 —t1) + (b1 — t5)

s0 w; is between 17 (A > 0) and 1. The nearer the vertex is to
the end of the subsequence, the higher weight it has.

w; fori=1,...,n—-1

So our distance function is sensitive to similar subsequences from
the same patient, flexible with respect to amplitude and frequency
changes, insensitive to offset translation, and suitable for online
application with different weights for different parts of the subse-
quences. One salient feature of our similarity measure is its para-
metric. It can be applied in other application domains by adjusting
the parameters of ws, w;, o and 3. For instance, the weighted dis-
tance functions in [16, 25] are special cases of our distance mea-
sure.

Currently, the settings if different parameters are based on prior ex-
perience and experimental results. We are working on new strate-
gies for automatic parameter tuning, so that they can learn the
proper settings from training data and dynamically adjust their val-
ues during online procedures.

4.3 Motion prediction

The immediate future of a historical subsequence is known. By
matching a current query subsequence with a similar historical
subsequence, one can predict that the future of the query subse-
quence will be similar to that of the historical subsequence. Future
frequency, amplitude or position can be predicted. This section

describes position prediction. Prediction of the other future charac-
teristics is analogous.

A typical prediction task is to locate the tumor after At from the
current time. Statistical analysis over the retrieved subsequences
can predict future tumor position through the following steps. To
simplify the process, we assume that the current time is the time of
the last vertex of the query subsequence.

For each retrieved similar subsequence S;, its position after At
from the last vertex is retrieved, denoted as X, (At). Then, the
future position of the query subsequence after At is predicted us-
ing the following formula:

1 m
- X, (At) — Xs,1) - ws,
2211“18:' ;( s; (At) si1) " Ws;
where m is the total number of retrieved similar subsequences, X1
is the first vertex position of the query subsequence, Xs;1 is the
first vertex position of S;, and ws, is the subsequence weight of .S;.

5. OFFLINE CLUSTERING

Subsequence matching in the previous section is introduced for on-
line applications, but it can be used for offline data analysis too. In
this section, we define whole stream similarity and patient similar-
ity based on subsequence similarity. Stream and patient similarity
are important for tumor motion characterization, computer aided
diagnosis, and discovery of patient information correlations.

zq(At) = Xg1 +

The objectives for online and offline analysis are distinguished from
each other, which leads to different solutions. For online analysis,
the focus is on how a subsequence represents the current motion
status and how to predict future motion, so we propose a distance
function with different weights for vertices. For offline analysis, the
goal is to discover correlations between moving patterns and patient
information. Since there is no ’current time’, in offline analysis, all
vertices from the same subsequence have the same weights. But the
weights over amplitude («) and frequency (8) are still necessary,
S0 is the weight for a source stream (ws). Thus, the offline subse-
quence distance can be obtained from Definition 2 by setting all w;
to 1. We denote the offline subsequence distance as d), (S1, S2).

n—1 n—1
p 1
ds(51752) = m (a E Az; + E Ati)
s i=1 i=1

d;,(S1, S2) is used below to define the distance functions between a
pair of streams or patients, and clustering over stream and patients.

5.1 Stream similarity

The whole stream similarity between two PLR streams R, and R»
is defined based on the offline subsequence similarity between two
sets of subsequences. One set is from R; and another set is from
R». For a given stream R with IV vertices, thereare N —n + 1
possible different subsequences with subsequence length n. Ac-
cording to our tumor motion model, there are only three regular
states and one irregular state. If a patient breathes regularly, the oc-
currence of the irregular state is rare. Suppose there are N; and N-
subsequences with length n from stream R; and R». So for each
subsequence of Ry, there are about % subsequences from Ry with
the same order of subsequences, and vice versa.

Only a small set of the most similar subsequences is used for stream
similarity. So for each query subsequence from R;, the most sim-
ilar v - N2 retrieved subsequences from Rz will be used to define



the distance between R; and R, where ~y is a user specified pa-
rameter. For example, v can be 10%. If a query cannot find at
least -y - N> subsequences with the same state order from R, that
query subsequence is an outlier and will be removed from the query
subsequences of R;.

In the end, there are m1 (m1 < N1 — n — 1) query subsequences
from Ry, which will retrieve -y - N, similar subsequences from R.
Similarly, there are m» (m2 < N2 — n — 1) query subsequences
from Rs, which will retrieve ~y - N1 similar subsequences from R;.
Based on these subsequences and their subsequence distance, the
stream distance of Ry and R is defined as:

DEFINITION 3. (Stream Distance) Given two raw streams R
and R, the stream distance function is:

m1 No-y

1 ’
dr(Ri, R2) = e T > di(Si, Sar)

i=1 k=1

ma Ni-y

1 ’
+ — dy(S2i, S
o, ;kz:l 5(Sai, S1x)
where S1; is one query subsequence from Ry and Sij, is a retrieved
subsequence from R;. Similar is for S2; and Sa. d, is the offline
subsequence distance.

The stream distance function is a good indicator of whole stream
similarity. The smaller the distance, the more similar the two streams
are. The distance between two stream is symmetric, d, (R1, R2) =
d»(R», R1), which makes it convenient to define patient similarity
in the next section.

5.2 Patient similarity

Due to the hierarchical structure of patient information, a patient
has several streams. Patient similarity is defined based on the stream
similarity. Stream similarity is based on subsequence similarity,
thus patient similarity is also based on subsequence similarity. The
distance between two patients is the average distance between two
streams, one from the first patient and the other from the second
patient.

DEFINITION 4. (Patient Distance) Given two patients P, and
P, the patient distance function is:

No Ny

dp(Paypb) = Na]'-Nb Z Zdr(Ram;Rbn)

m=1n=1

where N, and N, are stream numbers of patient P, and Py. Ram,
is the m®" session stream of P, and Ry, is the n*" session stream
of Py. dy(Ram,Rpn) is the stream distance between R,,, and
Ry

Patient similarity provides a convenient way to clustering patients
based on their similarity distances. After clustering of patients,
one may then identify patient features (e.g., age, tumor position,
historical treatments), which are correlated with tumor movement.
Next we will discuss some sample applications by the means of
patient clustering.

5.3 Clustering applications

The stream and patient similarity defined in the previous section is
important for characterization of tumor motion. And they provide
a convenient way to correlate a tumor moving pattern with patient
physiological information. We present three applications based on
stream and patient similarity. These are traditional clustering prob-
lems.

First, it can be used for correlation discovery between tumor motion
and a tumor’s geometric location. It is known that a tumor’s mov-
ing pattern is affected greatly by the tumor’s location in an organ.
But there is no consensus about the effect yet. We are working on a
solution to partition the organ based on motion similarity. The ba-
sic idea is clustering patients based on patient similarity. Then the
correlation can be discovered based on the clustered information.

Second, stream similarity and patient similarity can be used to dis-
cover physiological correlations with tumor motion. For instance,
stream similarity among different treatment sessions of the same
patient can be used to correlate a patient’s physiological changes
with moving pattern changes. Patient similarity is used to decide if
there is a correlation between genetic diseases with certain tumor
moving patterns. Conversely, knowing the correlations between tu-
mor moving patterns and a patient’s physiological conditions will
help in predicting tumor motion with fewer diagnostic samplings.

Third, patient distance can also be used for prediction with clus-
tering. After clustering, if a patient has a new treatment session,
then the subsequence similarity matching will only retrieve subse-
quences from the same cluster, not from patients in other clusters.

6. GENERALIZATION OF THE METHOD
Although we have been focusing on tumor respiratory motion anal-
ysis, our method is generally suitable for any motion with struc-
tured time series data, which can be described by a finite set of lin-
ear states. The general picture of the framework using our method
can be sketched in the following four steps:

(1) Motion Modeling: Build a finite state model to simulate the
motion with line segments. Each line segment corresponds
to one of a finite set of states.

(2) Segmentation: Develop a segmentation algorithm to produce
the piecewise linear representation of the raw data. The line
segment and the state of the line segment must be decided in
an online fashion for real-time applications.

(3) Subsequence Similarity: Define a subsequence similarity mea-
sure for subsequence matching. The similarity measure can
be either general or application specific.

(4) Result analysis: Propose some application specific statistical
methods to analyze the retrieved similar subsequences.

The four steps are independent from each other. An existing solu-
tion for one application can be adopted by another application, with
modification of one or more steps.

In addition to respiratory motion, there are many other applications
which can be simulated and analyzed using the above framework.
A few examples are briefly listed here.



Table 1: Settings of Parameters.

| Parameters | Symbols ] Values
Weight for amplitude o 1.0
Weight for frequency B 0.25
Weight for vertexes A 0.25

Weight for source streams

1.0, if from the same session
Ws 0.9, if from different session of the same patient
0.3, if from different patients

Subsequence distance threshold ) 8.0
Stability threshold Pe 6.0
37 [Wroweiaig s apoly v apw 1209 Eowegiog sapoy ¥ apm 3 Elno weighting M o pory I o p
Ao pw,  » withall weighting A o pw,  » withall weighting Do b ™ et ncighing.
100 ;
2.5 \'_v_// s ?“—‘_’m“_‘_s 25
= e 3 80 ) =i
o =) —_—
E’ ;—_—/ S | s g =
g 2 S 60 g 24 =
o o 5]  —
o 404 —
1.5+ = 154 ——
20 -  —
1 0 T T T T T T 1 1

T T T T T T T 1
33 67 100 133 167 200 233 267 300
At (ms)
(a)

33 67 100 133 167 200 233 267 300

average
At (ms)

(b) (¢)

Figure 6: Prediction results using different weighted factors for subsequence similarity. (a) Mean prediction error for different time
intervals, (b) Error reduction by different weighting factors, (c) Averaged prediction results over all the time intervals.

A very similar application is patient heartbeat analysis and
characterization. The regularity of a heartbeat may be af-
fected by fever, blood pressure, medication, or other phys-
iological conditions. Heart beat analysis is a major part in
patient diagnosis and treatment procedure.

e Quite a few mechanical instruments move in a predictive pat-
terns with linear motion of a finite set of states. The varia-
tions of the mechanical movement may be affected by differ-
ent factors, such as temperature, wind, or electronic power.
Predicting future motion or detecting abnormal moving pat-
terns is of great importance for some applications.

e Inanassembly line, the motion of a robot arm may be limited
to a finite set of predefined states. We can pursue dynamic
robot control and automatic robot manipulation through mo-
tion prediction and corresponding response actions.

e The tide’s rhythmic rise and fall is in a predictive pattern,
mostly following the moon’s motion and position. The tidal
motion is affected by weather conditions, such as the force
of wind. By learning more about tidal motion, we can dis-
cover how the phases of the moon or the moon’s distance
from Earth affects the tidal range. We can also correlate tides
with coastal catastrophes.

7. PERFORMANCE

We have evaluated our subsequence matching approach and its ap-
plications by a series of experiments. \We test our similarity mea-
sures using online prediction results as an accuracy indicator. We

have experiments to evaluated different weighting factors, as well
as to compare our new weighted L; distance functions to the cor-
responding weighted Euclidean distance. The second set of exper-
iments evaluates our online query subsequence generation mecha-
nism by comparing with fixed length query subsequences. Another
set of experiments shows the results for offline stream and patient
similarity, and how the results of offline analysis can help for online
tumor motion prediction.

7.1 Experimental setup

Real patient data is used in our experiments. More than 2,000,000
raw data points from 42 patients with about 1200 treatment ses-
sions, were used in experiments. Data is imaged at 30Hz. All our
experiments were conducted on a DELL OPTIPLEX GX 260 with
Pentium(R) 4 processor, 2.66GHz CPU, 1GB RAM.

We have done a series of experiments to set up the parameter values
for subsequence matching. To determine the values for one param-
eter (for instance 3), we first fixed all the other parameters (such as
a, A\, w;, § and p.). Then we run experiments with different 3 val-
ues. Finally, 3 is fixed to the value with the best prediction results.
Later, the fixed 3 is used to determine the values of other param-
eters. In the following experiments, we use the settings shown in
Table 1, unless otherwise specified.

7.2 Subsequence similarity measures

The subsequence similarity defined in Definition 2 uses a weighted
L, distance function. The similarity measure is evaluated by pre-
diction quality of future tumor positions. The mean difference be-



m 3 cycles, fixed & 5 cycles, fixed v 7 cycles, fixed
A 9cycles, fixed x dynamic

1.5 T T T T T T T l
33 67 100 133 167 200 233 267 300

At (ms)

Mean (mm)

(a)

Dynamic Query Length
(cycles)

0 T T T T T T T T l
2 4 6 8 10 12 14 16 18 20

Stability Threshold
(b)

Figure 7: Dynamic and fixed query subsequences. (@) Prediction results for fixed and dynamic lengths, (b) Relationship between

dynamic length and subsequence stability threshold.

m without clustering x with clustering

Mean (mm)

15 _'_\,_./«—’—'//‘

Average Stream Distance d,

1 T T T T T T T l
33 67 100 133 167 200 233 267 300

At (ms)
(a)

Average Patient Distance d,

2 | I
0 T

the same
stream

different
streams the
same patient

(b)

different
patients

different
patients

the same
patient

(¢)
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tween the predicted positions and PLR values is used to measure
the quality of prediction. Smaller mean difference means better
prediction results.

One thing to be noted here is that tumor motion is limited in space,
averaged about 15mm for superior-inferior motion. Even a slightly
better prediction, on the order of 0.5mm more accurate, is of great
significance, since it will reduce patient radiation toxicity to healthy
tissues or structures.

Figure 6 shows the prediction results using different weighting fac-
tors (o, B, ws and w;) for subsequence distance functions. Fig-
ure 6a is the prediction results after different time periods. At
is between 0 and 300 milliseconds. 300ms is a reasonable upper
bound approximation for system delay of average imaging rate.
Figure 6b illustrates how much prediction error has been reduced
by the weighting factors, comparing to the one with no weighting
factors at all. Figure 6c is the average prediction results for all the
time intervals.

The results show that prediction without any weighted information
(no weighting) gives the worst prediction results. Prediction using
the distance function with different weights for amplitude and fre-
quency, but with neither weighted stream information nor weighted
line segments (a, B only) gives a slightly better prediction results.

Prediction with one additional weighting factor, either weighted
streams (a, B, ws) or weighted line segments (a, 3, w;) is also
slightly better. Prediction with all the weighting factors (with all
weighting) yields the best results.

The threshold for the distance function (§) also affects prediction
results. With a smaller threshold, the prediction results are better,
which is illustrated in Figure 9. The drawback is that there will
be fewer similar subsequences with a smaller §. We predict only
if there are a certain number of retrieved subsequences. A smaller
& will result in fewer predictions. There is a tradeoff between the
number of predictions and the prediction accuracy.

There are several existing distance functions, such as Euclidean dis-
tance, longest common subsequence (LCS) [5], and dynamic time
warping (DTW) [22, 27]. LCS is proposed for string matching.
It is not applicable for tumor motion analysis because tumor po-
sition is continuous. We did not run experiments to compare our
weighted L; distance function with DTW because, first, DTW has
no weighted information, and second, the running time of DTW
is very computationally expensive, which makes it not suitable for
real-time prediction. Third, DTW does not create any meaningful
description of the data.

7.3 Query subsequence generation



259

s

Mean (mm)

0.5

m3=60 o 5=80 v §=100 a §=120

0 T T T T T T T 1
33 67 100 133 167 200 233 267 300

At (ms)

Figure 9: Effects of distance threshold 4.

Experiments are carried out to test the query subsequence genera-
tion mechanism, which dynamically adjusts the length of a query
subsequence based on subsequence stability. The results are sum-
marized in Figure 7.

The performance results show that the dynamic method has over-
all better performance than fixed length query subsequences. Fig-
ure 7a compares the prediction quality for query subsequences with
different fixed lengths along with the dynamic method. The dy-
namic method has better performance.

In the dynamic method, the length of a query subsequence is deter-
mined by the subsequence stability threshold. The relationship be-
tween the average dynamic query subsequences and stability thresh-
olds (pc) is presented in Figure 7b, with Ly, = 2 and Lpes =
9 breathing cycles (defined in Section 4.1). The lengths of query
subsequences increase with a smaller stability threshold. Subse-
quences have a length ranging from 3 to 5 breathing cycles.

7.4 Clustering

Clustering of streams and patients based on subsequence similar-
ity is an effective tool for tumor motion analysis, prediction and
correlation discovery. One application based on stream and patient
similarity is illustrated in Figure 8a. It displays prediction results
with or without clustering based on patient distances. With cluster-
ing, subsequence similarity matching will only search for similar
subsequences from patients in the same cluster. Without cluster-
ing, similar subsequences from all patients will be retrieved and
used in prediction. The results show that prediction with clustering
gives better accuracy.

Next we want to show the stream and patient similarity based on
subsequence similarity. Intuitively, a stream should be the most
similar to itself, less similar to other streams from the same patient,
and the least similar to streams from other patients. Similarly, pa-
tients’ data is more similar to other data from him/herself, than to
data from other patients. These ideas are supported by our perfor-
mance results shown in Figure 8b and c.

7.5 Efficiency

We have tested the efficiency for subsequence similarity matching.
Since online prediction is real-time application, response time is
very important. All the data can fit in memory, no disk 1/O is
needed. Our online segmentation runs with constant space and in
linear time with respect to raw data points. So for each new in-

coming data point, the segmentation runs in constant time. Each
subsequence similarity matching runs in linear time with respect to
segmented line segments. The average time of one prediction is less
than 30 millisecond in our data sets, including the time for segmen-
tation and similarity matching. So the computation time is short
enough for image guided dynamic targeting radiation treatment.

8. SUMMARY AND FUTURE WORK

In this paper, we introduced a solution for tumor respiratory mo-
tion analysis, clustering and online prediction by subsequence sim-
ilarity matching over tumor motion data. To address the special
requirements for tumor motion analysis, we defined a new subse-
quence similarity measure based on a finite state model and piece-
wise linear representation (PLR) of raw data. The new weighted L
distance function has different weights on amplitude, frequency,
source stream, and proximity to current time. To guard against
query sequences which are abnormal (not representative), we pro-
posed a new concept: subsequence stability. A flexible scheme was
adopted to dynamically adjust the length of a query subsequence
based on subsequence stability. Experimental results proved that
the dynamically generated query subsequences have overall better
performance than queries with fixed lengths. And the weighted
L, distance function outperforms the corresponding weighted Eu-
clidean distance function.

Based on subsequence similarity, whole stream and patient simi-
larity are defined. Stream and patient similarity are important for
motion characterization, and for the discovery of correlations be-
tween motion patterns and other patient information. Patient simi-
larity also provides a convenient way to cluster patients, which can
be used for both online and offline applications.

Our approach has taken into account the internal structure of a time
series, the underlying meaning of the structure, and the influence
on subsequence matching. The solution can be generalized into a
framework, which is applicable to a wide class of problems involv-
ing motion analysis and prediction with structured time series data.

Future research can proceed in several directions. Our immedi-
ate plans include applying our approach for image guided dynamic
radiation treatment. One ongoing project is automatic dynamic pa-
rameter tuning, in which the system will learn the proper parameter
settings from training data and adapt them during online operation.
Another research area is to improve noise detection strategies and
to find better cardiac motion modeling to obtain more precise mo-
tion prediction. Still another problem is incorporating indexing in
the search algorithm to more rapidly retrieve similar subsequences.
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